1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natasha2012 [34]
3 years ago
8

What is the name of the force that slows it down?.

Physics
1 answer:
Rus_ich [418]3 years ago
6 0
Gravity pulls to the centre of the earth. A ship floats in water because the water pushing it up (upthrust) is equal to the force<span> of gravity (weight) pulling it </span>down<span>. Friction also occurs when objects move through air. This is </span>called<span>air resistance.</span>
You might be interested in
g Two cars, car 1 and car 2 are traveling in opposite directions, car 1 with a magnitude of velocity v1=13.0 m/s and car 2 v2= 7
bogdanovich [222]

Answer:

When they are approaching each other

    f_a = 2228.7 \  Hz

When they are passing  each other

    f_a = 2100Hz

 When they are retreating  from each other

     f_a =  1980.7 Hz

Explanation:

From the question we are told that

     The velocity of car one is  v_1 = 13.0 m/s

      The velocity of car two is  v_2 = 7.22 m/s

     The frequency of sound from car one is  f_e = 2.10 kHz

Generally the speed of sound at normal temperature is  v = 343 m/s

  Now as the cars move relative to each other doppler effect is created and this  can be represented  mathematically  as

              f_a = f_o [\frac{v \pm v_o}{v \pm v_s} ]

Where v_s is the velocity of the source of sound

            v_o is the velocity of the observer of the sound

            f_o is the actual frequence

             f_a  is the apparent frequency

Considering the case when they are approaching each other

        f_a = f_o [\frac{v +  v_o}{v -  v_s} ]

          v_o = v_2  

         v_s = v_1

         f_o = f_e

Substituting value

            f_a = 2100  [\frac{343 +  7.22}{ 343  -  13} ]

              f_a = 2228.7 \  Hz

Considering the case when they are passing  each other    

At that instant

                  v_o = v_s = 0m/s

                   f_o = f_e

               f_a = f_o [\frac{v }{v } ]

              f_a = f_o

Substituting value

             f_a = 2100Hz

Considering the case when they are retreating  from each other    

                f_a = f_o [\frac{v -  v_o}{v +   v_s} ]

          v_o = v_2  

         v_s = v_1

         f_o = f_e      

Substituting value

         f_a = 2100  [\frac{343 -  7.22}{343 +   13} ]    

          f_a =  1980.7 Hz    

7 0
3 years ago
What is Br charge after it gains an electron?
sergeinik [125]

Im not 100% sure but i think its bromine.

Hope this helps ^_^

4 0
3 years ago
Doc Brown holds on to the end of the minute hand of the clock atop city hall. The tangential velocity of the minute hand is 0.41
alexdok [17]

The Professor's centripetal acceleration is 0.044 m/s²

Centripetal acceleration is the acceleration of an object moving in circular motion. It is usually directed towards the center of the rotation.

It is given by:

a = v²/r

where v is the velocity and r is the radius.

Given that the radius (r) = 4 m, velocity (v) = 0.419 m/s, hence:

a = v²/r = 0.419²/4 =  0.044 m/s²

The Professor's centripetal acceleration is 0.044 m/s²

Find out more at: brainly.com/question/6082363

3 0
2 years ago
How can resistance be useful and where can they be useful?
sergiy2304 [10]
-- Resistance can be useful among the population of a repressive government.
Although it can be dangerous for those who resist, it can also exert pressure
against the regime to alter its repressive practices.

-- Resistance can also be useful in electronic circuits. "Lumped" components with
known numerical values of resistance are used to divide voltage, limit current, and
dissipate controlled amounts of electrical energy. 
3 0
2 years ago
A pilot is upside down at the top of an inverted loop of radius 3.20 x 103 m. At the top of the loop his normal force is only on
n200080 [17]

Answer:

6858.5712 m/s

Explanation:

Given that:

Radius, r

R = 3.20 * 10^3.

Normal force = 0.5 * normal weight

Normal force = Fn ; Normal weight = Fg

Fn = 0.5Fg

Recall:

mv² / R = Fn + Fg

Fn = 0.5Fg

mv² / R = 0.5Fg + Fg

mv² /R = 1.5Fg

mv² = 1.5Fg * R

F = mg

mv² = 1.5* mg * R

v² = 1.5gR

v = sqrt(1.5gR)

V = sqrt(1.5 * 9.8 * 3.2 * 10^3)

V = sqrt(47.04^3)

V = 6858.5712 m/s

6 0
2 years ago
Other questions:
  • If 320 J of work is done on a spring with a spring constant of 730 N/m, how far will it stretch?
    14·1 answer
  • What is CGS unit of weight ​
    14·2 answers
  • Suppose you push a hockey puck of mass m across frictionless ice for a time 1.0 s, starting from rest, giving the puck speed v a
    13·2 answers
  • Two resistors of resistances R1 and R2, with R2&gt;R1, are connected to a voltage source with voltage V0. When the resistors are
    11·1 answer
  • Explain why you poured the water into water before you identify the smell ?
    14·1 answer
  • Which of the following ocean-floor features would contain the newest rocks?
    9·2 answers
  • A sailboat took 25 hours to cover 1/4 of a journey. Then, it
    11·1 answer
  • Connie flew from Phoenix to flagstaff, a distance of 180 miles at a constant speed of 180 miles per hour. She then returned to t
    6·1 answer
  • A moving car has 2000 J of kinetic energy. If the speed doubles, how much kinetic energy would it have?
    13·1 answer
  • How is 1 hectoliter different from 1 kiloliter? a hectoliter is 10 times smaller than a kiloliter. a hectoliter is 100 times sma
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!