B. only its velocity should change
Answer:
The rate of the boat in still water is 44 mph and the rate of the current is 4 mph
Explanation:
x = the rate of the boat in still water
y = the rate of the current.
Distance travelled = 120 mi
Time taken upstream = 3 hr
Time taken downstream = 2.5 hr
Speed = Distance / Time
Speed upstream

Speed downstream

Adding both the equations


The rate of the boat in still water is <u>44 mph</u> and the rate of the current is <u>4 mph</u>
Answer:
(a) 21.36 ohms
(b) 5.62 A
Explanation:
Parameters given:
Potential difference, V = 120 V
Power, P = 674 W
(a) Power is given as:
P = V²/R
Where R is resistance
=> R = V²/P
R = 120²/674
R = 14400/674
R = 21.36 ohms
(b) Power is also given as:
P = I*V
Where I = Current (time rate of flow of Electric charge)
=> I = P/V
I = 674/120
I = 5.62 A
Answer:
initial velocity = 0 m/s
final velocity = 4.92 m/s
constant acceleration so,
(a) average velocity =
(initial velocity + final velocity)/2
(b) distance = average velocity x time
substitute and calculate
Explanation:
HOOE ITS HELP ;)
Answer:
miu = 0.31
Explanation:
The friction force is defined as the product of the normal force by the coefficient of friction.

where:
f = friction force = 3 [N]
miu = friction coefficient
N = normal force [N]
The normal force on a horizontal surface can be calculated by means of the product of mass by gravity.
where:
m = mass = 1 [kg]
g = gravity acceleration = 9.81 [m/s²]

![N= 9,81 [N]](https://tex.z-dn.net/?f=N%3D%209%2C81%20%5BN%5D)
Now replacing in the equation above, we can find the friction coefficient.
