Answer:
8N
Explanation:
Applied force - Frictional force = net force
Q before connected = Q after connected C1V1+C2V2 = (C1+C2) V
C1= 3×10^-6 F
V1= 480v
C2= 4×10^-6 F
V2= 500v
(3×10^-6)×(480) + (4×10^-6)×(500) = (3×10^-6 + 4×10^-6) × V
Simplifying the above, we get:
( 1440× 10^-6) + (2000 ×10^-6) = (7 × 10^-6) × V.
Further simplified as:
3440 × 10^-6 = 7 × 10^-6 × V
Making V the subject
V = 491.43volts
Therefore the potential difference across each capacitor is 491.43v
Answer:
Weight=686.7N,
, S.G.=0.933, F=17.5N
Explanation:
So, the first value the problem is asking us for is the weight of methanol. (This is supposing there is a mass of methanol of 70kg inside the tank). We can find this by using the formula:
W=mg
so we can substitute the data the problem provided us with to get:

which yields:
W=686.7N
Next, we need to find the density of methanol, which can be found by using the following formula:

we know the volume of methanol is 75L, so we can convert that to
like this:

so we can now use the density formula to find our the methanol's density, so we get:



Next, we can us these values to find the specific gravity of methanol by using the formula:

when substituting the known values we get:

so:
S.G.=0.933
We can now find the force it takes to accelerate this tank linearly at 
F=ma

F=17.5N