V = I * R
Where V is the voltage, I is the current and R is the resistance. Using Ohm's law, you require resistance to find the current through the wire. Technically, if the wire has a resistance of 0, you will get infinite current. But this isn't possible. Maybe the negligible resistance refers to the battery's internal resistance - not the wire's resistance.
Firstly they have a acceleration downwards due the force downwards due they gravitational field acting on it's mass.
as it falls it gains speed, and as it gains speed the air Resistance which is a upward force actin on the drop increases, eventually the rain drop's upward and downward forces are balanced and hence there is no RESULTANT force therefore no acceleration, so the drops falls in constant speed (terminal verlocity is a better term)
Are you wondering that why is the raindrop still moving given that the forces are balanced? If so according to Newton's 1st law an object will keep moving or Remain at rest until a RESULTANT force acts on it.
Explanation:
formula: <u>Mass</u>
Density x volume
2a) m=10kg v=0.3m³
10÷0.3=33.3 kg/m
2b) m = 160 kg V=0.1m³
160÷0.1=1600 kg/m
2c) m = 220 kg V = 0.02m³
220÷0.02=11000 kg/m
A wooden post has a volume of 0.025m³ and a mass of 20kg. Calculate its density in kg/m.
density = volume ÷ mass
20÷ 0.025=800 kg/m
Challenge: A rectangular concrete slab is 0.80m long, 0.60 m wide and 0.04m thick. Calculate its volume in m³.
Formula : Length x width x height = Volume
0.80 x 0.60 x 0.04 = 0.0192m³
B) The mass of the concrete slab is 180 kg. Calculate its density in kg/m.
density = volume ÷ mass
180 ÷ 0.0192 = 9375 kg/m
law of conservation of energy
aka the first law of thermodynamics
Answer:
1 * 10^-7 [J]
Explanation:
To solve this problem we must use dimensional analysis.
1 ergos [erg] is equal to 1 * 10^-7 Joules [J]
![1[erg]*\frac{1*10^{-7} }{1}*[\frac{J}{erg} ] \\= 1*10^{-7}[J]](https://tex.z-dn.net/?f=1%5Berg%5D%2A%5Cfrac%7B1%2A10%5E%7B-7%7D%20%7D%7B1%7D%2A%5B%5Cfrac%7BJ%7D%7Berg%7D%20%5D%20%5C%5C%3D%201%2A10%5E%7B-7%7D%5BJ%5D)