Hey there Kendrell!
Yes, this is very true, when the car slows down, our bodies will tend to lean forward a little bit, and this is actually due to the "motion of inertia".
Inertia allows for this to happen, this is why in this case, we have this case.
Hope this helps.
~Jurgen
Answer:
V = 10.88 m/s
Explanation:
V_i =initial velocity = 0m/s
a= acceleration= gsinθ-
cosθ
putting values we get
a= 9.8sin25-0.2cos25= 2.4 m/s^2
v_f= final velocity and d= displacement along the inclined plane = 10.4 m
using the equation


v_f= 7.04 m/s
let the speed just before she lands be "V"
using conservation of energy
KE + PE at the edge of cliff = KE at bottom of cliff
(0.5) m V_f^2 + mgh = (0.5) m V^2
V^2 = V_f^2 + 2gh
V^2 = 7.04^2 + 2 x 9.8 x 3.5
V = 10.88 m/s
I have all the answers here so take this
Before the skydiver opens the parachute, his velocity would be increasing greatly as much as 9.8 m/s². Opening the parachute would increase the surface area to which air may cause resistance. The skydiver then reaches his terminal velocity.
Answer: 0.25 m/s
Explanation: Speed = wavelengt · frequency
v = λf and frequency is 1/period f = 1/T
Then v = λ/T = 5 m / 20 s = 0.25 m/s