Answer:
83.2 W/m^2
Explanation:
The radiation per unit area of a star is directly proportional to the power emitted, which is given by Stefan-Boltzmann law:

where
is the Stefan-Boltzmann constant
A is the surface area
T is the surface temperature
So, we see that the radiation per unit area is proportional to the fourth power of the temperature:

So in our problem we can write:

where
is the power per unit area of the present sun
is the temperature of the sun
is the power per unit area of sun X
is the temperature of sun X
Solving for I2, we find

Answer:

Explanation:
Electrostatic Forces
The force exerted between two point charges
and
separated a distance d is given by Coulomb's formula

The forces are attractive if the charges have different signs and repulsive if they have equal signs.
The problem described in the question locates three point charges in a straight line. The charges have the values shown below


The distance between
and
is

The distance between
and
is

We must find the value of
such that

Applying Coulomb's formula for
is

Now for 

If the total force on
is zero, both forces must be equal. Note that being q2 negative, the force on q3 is to the right. The force exerted by q1 must go to the left, thus q1 must be positive. Equating the forces we have:


Simplfying and solving for 



Answer:
(a)

(b)
1120 N
Explanation:
Change in velocity,
is given by subtracting the initial velocity from the final velocity and expressed as 
Where v represent the velocity and subscripts f and i represent final and initial respectively. Since the ball finally comes to rest, its final velocity is zero. Substituting 0 for final velocity and the given figure of 8 m/s for initial velocity then the change in velocity is given by

To find
then we substitute 7 kg for m and -8 m/s for
therefore 
(b)
The impact force, F is given as the product of mass and acceleration. Here, acceleration is given by dividing the change in velocity by time ie

Substituting t with 0.05 s then 
Since F=ma then substituting m with 7 Kg we get that F=7*-160=-1120 N
Therefore, the impact force is equivalent to 1120 N
Answer:
Music has an important place in our lives.
The initial position of the object was found to be 134.09 m.
<u>Explanation:</u>
As displacement is the measure of difference between the final and initial points. In other words, we can say that displacement can be termed as the change in the position of the object irrespective of the path followed by the object to change the path. So
Displacement = Final position - Initial position.
As the final position is stated as -55.25 meters and the displacement is also stated as -189.34 meters. So the initial position will be
Initial position of the object = Final position-Displacement
Initial position = -55.25 m - (-189.34 m) = -55.25 m + 189.34 m = 134.09 m.
Thus, the initial position for the object having a displacement of -189.34 m is determined as 134.09 m.