Refer to the diagram shown below.
i = the current in the circuit., A
R₁ = the internal resistance of the battery, Ω
R₂ = the resistance of the 60 W load, Ω
Because the resistance across the battery is 8.5 V instead of 9.0 V, therefore
(R₁ )(i A) = 9 - 8.5 = (0.5 V)
R₁*i = 0.5 (10
Also,
R₂*i = 9.5 (2)
Because the power dissipated by R₂ is 60 W, therefore
i²R₂ = 60
From (2), obtain
i*9.5 = 60
i = 6.3158 A
From (1), obtain
6.3158*R₁ = 0.5
R₁ = 0.5/6.3158 = 0.0792 Ω = 0.08 Ω (nearest hundredth)
Answer: 0.08 Ω
Answer:
a
Explanation:
because it has more energy
Answer:
0.767m
Explanation:
We are given that the time interval between each droplet is equal.
We are also given that the fourth drop is just dripping from the shower when the first hits the floor.
If they fall at the same time interval and we know that the distance between the shower head and floor are the same, they must therefore fall at the same velocity.
The distance between each drop has to be the same given that they fall at equal time intervals.
Let this distance be x.
We can then partition the entire height of the system into three parts (as shown in the diagram).
Hence, we can say that:
x + x + x = 2.3m
3x = 2.3m
=> x = 2.3/3 = 0.767m
Therefore, at the time the first drop hits the floor, the third drop is only 0.767 m below the shower head.
"<span>a layer in the earth's stratosphere at an altitude of about 6.2
miles (10 km) containing a high concentration of ozone, which absorbs
most of the ultraviolet radiation reaching the earth from the sun."
Hope this helps!
</span>
Answer:
0.34 sec
Explanation:
Low point of spring ( length of stretched spring ) = 5.8 cm
midpoint of spring = 5.8 / 2 = 2.9 cm
Determine the oscillation period
at equilibrum condition
Kx = Mg
g= 9.8 m/s^2
x = 2.9 * 10^-2 m
k / m = 9.8 / ( 2.9 * 10^-2 ) = 337.93
note : w =
=
= 18.38 rad/sec
Period of oscillation = 
= 0.34 sec