Charles law gives the relationship between volume and temperature of gas at constant pressure
it states that at constant pressure, volume of gas is directly proportional to temperature
V/T = k
where V - volume T - temperature and k - constant

parameters for the first instance are on the left side of the equation and parameters for the second instance are on the right side of the equation
T1 - temperature in Kelvin - 27 °C + 273 = 300 K
T2 - 11 °C + 273 = 284 K
substituting the values in the equation
2.6 L / 300 K = V / 284 K
V = 2.46 L
New volume of the gas is 2.46 L
The correct answer is Thermal Equilibrium
Explanation:
The term "thermal equilibrium" is used when two or more objects have the same temperature and therefore there is not an exchange of heat between them. This occurs when the objects had a different temperature at the beginning but due to a close contact heat is transferred from one object to the other until an equilibrium or same temperature is reached. For example, a hot cup over a table or any other surface will transfer the heat to the surface, but after some time both the cup and the surface will have the same temperature or will reach thermal equilibrium.
The independent variable would be the variable in the research that is being manipulated by the researcher. In this case, it would be amount of food as it is what is being manipulated and changed in the research design. The dependent variable would be the variable that is being studied so, for this case, it would be the weight gain of the mice. The constants are the factors that might affect the dependent variable but is held constant or the same by the researcher throughout the experiment. These are the size of cage, amount of water, amount of sunlight, temperature and the exercise wheel.
Answer:
Explanation:
The solution has been attached