Answer:
The displacement of the car after 6s is 43.2 m
Explanation:
Given;
velocity of the car, v = 12 m/s
acceleration of the car, a = -1.6 m/s² (backward acceleration)
time of motion, t = 6 s
The displacement of the car after 6s is given by the following kinematic equation;
d = ut + ¹/₂at²
d = (12 x 6) + ¹/₂(-1.6)(6)²
d = 72 - 28.8
d = 43.2 m
Therefore, the displacement of the car after 6s is 43.2 m
<span>.Ask a Question
.Do Background Research.
.Construct a Hypothesis.
.Test Your Hypothesis by Doing an Experiment
.Analyze Your Data and Draw a Conclusion.
<span>.Communicate Your Results.</span></span>
The destructive interference formula for diffraction grating problems is
.
<h3>What is the definition of destructive interference?</h3>
Destructive interference happens when the maxima of two waves are 180° out of phase a positive displacement of one wave is canceled exactly by a negative displacement of the other wave.
The formula for brighter patches resulting from constructive interference and darker patches resulting from destructive interference in a diffraction grating is:

The grating spacing is denoted by d, the angle of light is denoted by a the fringe order is denoted by n, and the wavelength is denoted by
.
The destructive interference formula is now based on the fact that destructive interference occurs between the fringes.
Hence the destructive interference formula for diffraction grating problems is
.
To learn more about destructive interference refer to the link;
brainly.com/question/16098226
Science based on properties of matter and energy