Answer:
History
Explanation:
Im. Sorry. Im. Not. Much. Help
highest energy level to the ground state.
Explanation:
The transition from the highest energy level to the ground state.
An electron has a discrete amount of energy accrued to it in any energy level it belongs to.
Electrons can transition between one energy level or the other.
- When electrons change state, they either release or absorb energy.
- When an atom absorbs energy, they move from their ground to final state which is consistent with the energy of the final state.
- When electrons release energy, they move from excited state to their ground state.
- Electrons will release the greatest amount of energy when they move from the highest energy level to the ground state.
Learn more:
Neil Bohr brainly.com/question/4986277
#learnwithBrainly
To solve this problem we apply the thermodynamic equations of linear expansion in bodies.
Mathematically the change in the length of a body is subject to the mathematical expression

Where,
Initial Length
Thermal expansion coefficient
Change in temperature
Since we have values in different units we proceed to transform the temperature to degrees Celsius so


The coefficient of thermal expansion given is

The initial length would be,

Replacing we have to,




This means that the building will be 35.5cm taller
Radiant heat transfer is proportional to the 4-th power of absolute temperature.
Therefore if the temperature is quadrupled, the radiant heat energy will increase by a factor of
4⁴ = 256
Answer: 256
Answer:
v = 8.09 m/s
Explanation:
For this exercise we use that the work done by the friction force plus the potential energy equals the change in the body's energy.
Let's calculate the energy
starting point. Higher
Em₀ = U = m gh
final point. To go down the slope
Em_f = K = ½ m v²
The work of the friction force is
W = fr L cos 180
to find the friction force let's use Newton's second law
Axis y
N - W_y = 0
N = W_y
X axis
Wₓ - fr = ma
let's use trigonometry
sin θ = y / L
sin θ = 11/110 = 0.1
θ = sin⁻¹ 0.1
θ = 5.74º
sin 5.74 = Wₓ / W
cos 5.74 = W_y / W
Wₓ = W sin 5.74
W_y = W cos 5.74
the formula for the friction force is
fr = μ N
fr = μ W cos θ
Work is friction force is
W_fr = - μ W L cos θ
Let's use the relationship of work with energy
W + ΔU = ΔK
-μ mg L cos 5.74 + (mgh - 0) = 0 - ½ m v²
v² = - 2 μ g L cos 5.74 +2 (gh)
v² = 2gh - 2 μ gL cos 5.74
let's calculate
v² = 2 9.8 11 - 2 0.07 9.8 110 cos 5.74
v² = 215.6 -150.16
v = √65.44
v = 8.09 m/s