Answer:
C. The bug's change in momentum is equal to the car's change in momentum.
Explanation:
As we know by Newton's 2nd law

here we have also know that when car hits the bug then force applied by wind shield on the bug is same as the force applied by the bug on the car's wind shield as per Newton's III law

so we know that

so we have

so correct answer will be
C. The bug's change in momentum is equal to the car's change in momentum.
First of all, we need to convert the angular speed from rev/min into rev/s:

The angular acceleration is the variation of angular speed divided by the time:

And this is constant, so we can use the following equation to calculate the angle through which the engine has rotated:

so, 5 revolutions.
According to the given statement Final velocity when they stick together is 8.735i^ + 11.25j^
<h3>What is collision and momentum?</h3>
The unit of momentum is kg ms -1. Momentum is a vector parameter that is influenced by the object's direction. During collisions involving objects, momentum is a relevant concept. The final velocity before a collision between two objects equals the total motion after the impact (in the absence of external forces).
<h3>Briefing:</h3>
From conservation of momentum
Initial momentum = final momentum
m u +M U =(m+M) V
2000×25 i^ +1500×30 j^ =(2000+1500) V
V = 8.735i^ + 11.25j^
Final velocity when they stick together is 8.735i^ + 11.25j^
To know more about Collide visit:
brainly.com/question/27993473
#SPJ4
The complete question is -
A 2000 kg truck is moving eastward at 25 m/s. it collides inelastically with a 1500 kg truck traveling southward at 30 m/s. they collide at the intersection. Find the direction and magnitude of velocity of the wreckage after the collision, assuming the vehicles stick together after the collision.
Answer:
a) During the reaction time, the car travels 21 m
b) After applying the brake, the car travels 48 m before coming to stop
Explanation:
The equation for the position of a straight movement with variable speed is as follows:
x = x0 + v0 t + 1/2 a t²
where
x: position at time t
v0: initial speed
a: acceleration
t: time
When the speed is constant (as before applying the brake), the equation would be:
x = x0 + v t
a)Before applying the brake, the car travels at constant speed. In 0.80 s the car will travel:
x = 0m + 26 m/s * 0.80 s = <u>21 m </u>
b) After applying the brake, the car has an acceleration of -7.0 m/s². Using the equation for velocity, we can calculate how much time it takes the car to stop (v = 0):
v = v0 + a* t
0 = 26 m/s + (-7.0 m/s²) * t
-26 m/s / - 7.0 m/s² = t
t = 3.7 s
With this time, we can calculate how far the car traveled during the deacceleration.
x = x0 +v0 t + 1/2 a t²
x = 0m + 26 m/s * 3.7 s - 1/2 * 7.0m/s² * (3.7 s)² = <u>48 m</u>
Answer:
Explanation:
In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. The exact conservation laws include conservation of energy, and conservation of linear momentum, and also conservation of angular momentum, aswell as the conservation of electric charge