The voltage across an inductor ' L ' is
V = L · dI/dt .
I(t) = I(max) sin(ωt)
dI/dt = I(max) ω cos(ωt)
V = L · ω · I(max) cos(ωt)
L = 1.34 x 10⁻² H
ω = 2π · 60 = 377 /sec
I(max) = 4.80 A
V = L · ω · I(max) cos(ωt)
V = (1.34 x 10⁻² H) · (377 / sec) · (4.8 A) · cos(377 t)
<em>V = 24.25 cos(377 t)</em>
V is an AC voltage with peak value of 24.25 volts and frequency = 60 Hz.
The AMA is calculated as:
AMA = force obtained / force applied
AMA = 400 / 40
AMA = 10
Answer:
10
Explanation:
i = 5/.5 = 10 Amps. Hope this helps :)
Answer:
Explanation:
Given:
Charge = <em>q</em>
Electric field strength =
weight of the droplet = <em>mg</em>
The charge is suspended motionless. This is because the electric force on the charge is balanced by the weight of the droplet.
electric force on charged droplet, 
This is balanced by the weight, 
Equating the two:
