Answer:
gravity?
Explanation:
i dont have a lot of context but this is what i thought of so...
Yes. Only a perpendicular component produces a torque.
I may be wrong, but I think you're trying to say that Planet-A is
<em>3 times as far from the sun</em> as Planet-C is.
If that's the real question, then the answer is that the period of Orbit-A
is about<em> 5.2</em> times as long as the period of Orbit-C .
Orbital period ≈ (proportional to) (the orbital distance) ^ 3/2 power.
This was empirically demonstrated about 350 years ago by Johannes
and his brilliant Kepple, and derived about 100 years later by Newton
from his formula for the forces of gravity.
Answer:
53.895 m.
Explanation:
Using the equation of motion,
v² = u² + 2as .............. Equation 1
Where v = final velocity of the swan, u = initial velocity of the swan, a = acceleration of the swan, s = distance covered by the swan.
make s the subject of the equation,
s = (v² - u²)/2a----------- Equation 2
Given: v = 6.4 m/s, u = 0 m/s ( from rest) a = 0.380 m/s².
Substitute into equation 2
s = (6.4²-0²)/(2×0.380)
s = 40.96/0.76
s = 53.895 m.
Hence the swan will travel 53.895 m before becoming airborne.
Answer:
F = 196 N
Explanation:
For this exercise we will use Newton's second law, we define a reference system with the x axis in the direction of movement of the stones and the y axis vertically
Y axis
N- W = 0
N = mg
X axis
F -fr = ma
In this case, they ask us for the force to keep moving, so the stones go at constant speed, which implies that the acceleration is zero.
F- fr = 0
F = fr
the friction force has the equation
fr = μ N
fr = μ mg
we substitute
F = μ mg
let's calculate
F = 0.80 9.8 25
F = 196 N