Answer:
In an atomizer, or perfume sprayer, you squeeze a rubber bulb to squirt air through a tube. Because of the Bernoulli principle, the air rushing through the tube has a lower pressure than the surrounding atmosphere. ... The perfume is pushed out of the tube and sprays into the air as a fine mist.
Explanation:
Answer:
The speed of the police car is 294 m/s
Explanation:
Given;
frequency of the siren in air, f = 280 Hz
speed of sound in air, v = 343 m/s
Determine the wavelength of the sound in air to the stationary car:
v = fλ
where;
λ is wavelength of the sound
λ = v/f
λ = 343 / 280
λ = 1.225 m
Now, determine the speed at which the police car is approaching the stationary car;
The actual frequency of the police car, F = 240 Hz
V = Fλ
Where;
V is speed of the police car
λ is the distance between the police car and the stationary car, (wavelength)
V = 240 x 1.225
V = 294 m/s
Therefore, the speed of the police car is 294 m/s
Answer:
5 meters per second squared
Explanation:
We calculate the acceleration using the formula:
a = (vf - vi) / t
where "vf" is the final velocity, "vi" the initial velocity, and "t" the time it took to change from the initial velocity to the final one.
In our case:
a = (45 - 5) / 8 = 40 / 8 = 5 m/s^2
Chemical change, we can't change the bread back the way it was before
Hope this helps!
Answer:
the tempature and the map and climate
Explanation