Answer:
The Sun produces energy by the process of nuclear fusion. Nuclear fusion occurs when lighter nuclei combine to produce a larger, heavier nucleus. In the process, energy is released. Nuclear fusion requires very high temperatures and pressures. Nuclear fusion occurs in the core of the Sun when hydrogen atoms combine to form helium atoms.
Explanation:
I just took the assignment
A few different ways to do this:
Way #1:
The current in the series loop is (12 V) / (total resistance) .
(Turns out to be 2 Amperes, but the question isn't asking for that.)
In a series loop, the current is the same at every point, so it's
the same current through each resistor.
The power dissipated by a resistor is (current)² · (resistance),
and the current is the same everywhere in the circuit, so the
smallest resistance will dissipate the least power. That's R1 .
And by the way, it's not "drawing" the most power. It's dissipating it.
Way #2:
Another expression for the power dissipated by a resistance is
(voltage across the resistance)² / (resistance) .
In a series loop, the voltage across each resistor is
[ (individual resistance) / (total resistance ] x battery voltage.
So the power dissipated by each resistor is
(individual resistance)² x [(battery voltage) / (total resistance)²]
This expression is smallest for the smallest individual resistance.
(The other two quantities are the same for each individual resistor.)
So again, the least power is dissipated by the smallest individual resistance.
That's R1 .
Way #3: (Einstein's way)
If we sat back and relaxed for a minute, stared at the ceiling, let our minds
wander, puffed gently on our pipe, and just daydreamed about this question
for a minute or two, we might have easily guessed at the answer.
===> When you wire up a battery and a light bulb in series, the part
that dissipates power, and gets so hot that it radiates heat and light, is
the light bulb (some resistance), not the wire (very small resistance).
Answer:
Angular momentum = 0.7 kg.m²/s
Angular velocity = 583.3 rad/s
Explanation:
1. The torque τ is related to the angular momentum L by the relation
τ = ΔL/Δt
ΔL = τΔt
τ = 10 N. m
Δt = 70 ms = 70 × 10⁻³s
ΔL = (10 N. m) × (70 × 10⁻³s) = 700 × 10⁻³ kg.m²/s = 0.7 kg.m²/s
2. The rotational inertia I relates the angular momentum L to the angular velocity w
L = Iw
w = L/I
L = 0.7 kg.m²/s
I = 1.2 × 10⁻³ kg.m²
w = (0.7 kg.m²/s)/(1.2 × 10⁻³ kg.m²) = 583.3 rad/s
This could be wrong but I am giving a decent suggestion: All ions are atoms with a negative charge.