When a liquid is heated, the molecules gain kinetic energy. As the liquid begins to boil they have enough energy to break the intermolecular attractions between their neighbors. This happens first at the surface before the volume below has enough energy to boil. Thus you see high energy water molecules escaping from the surface as mist.
Answer:
Explanation:
There is reflection ( two times ) from upper and lower surface of the film . In both cases , reflection is from low to high density medium so there is change in phase of 180 twice .
So for constructive interference
2μd = n λ₁ , d is thickness required , λ is wavelength n₁ is order of bright fringe
For destructive interference ( minimum light )
2μd = (2n+1) λ₂/2
n λ₁ =(2n+1) λ₂/2
(2n+1) / 2n = λ₁ / λ₂
= 650 / 505
= 5 / 4 ( approx )
2n = 4
n = 2
2μd = n λ₁
2 x 1.33 x d = 2 x 650 nm
d = 488.72 nm
Answer:
laws of motion relate an object’s motion to the forces acting on it. In the first law, an object will not change its motion unless a force acts on it. In the second law, the force on an object is equal to its mass times its acceleration. In the third law, when two objects interact, they apply forces to each other of equal magnitude and opposite direction.
Answer:
a) 0.142mH
b) 14mV
Explanation:
the complete answer is:
(a) Calculate the self-inductance of a solenoid that is <ghtly wound with wire of diameter 0.10 cm, has a cross-sec<onal area of 0.90 cm2 , and is 40 cm long. (b) If the current through the solenoid decreases uniformly from 10 to 0 A in 0.10 s, what is the emf induced between the ends of the solenoid
a) the self inductance of a solenoid is given by:

μo: magnetic permeability of vacuum = 4\pi*10^{-7}N/A^2
A: cross sectional area = 0.9cm^2=9*10^{-5}m
L: length of the solenoid = 40cm = 0.4m
The N turns of the wire is calculated by using the diameter of the wire:
N = (40cm)/(0.10cm)=400
By replacing in the formula you obtain:

the self inductance is 1.42*10^{-4}H = 0.142mH
b) to find the emf you can use:

the emf induced is 14mV
Answer:
Remember that as the temperature of an object increases, the kinetic energy of the particles inside it also increases.
So, if the temperature of a wire increases, the kinetic energy of the particles inside increases. Then when the electrons try to flow through the wire, the probability of a collision is increased (then the resistance increases). Thus, if the filament goes from red-hot to white-hot (so the temperature of the wire increases) we can conclude that the resistance that the current experiences also increases.
So no, we can not expect the resistance of the light bulb to remain constant as the filament goes from red-hot to white-hot.