1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Citrus2011 [14]
3 years ago
13

An object of mass m is lowered at constant velocity at the end of a string of negligible mass. As it is lowered a vertical dista

nce h, its gravitational potential energy changes by ∆Ug = −m g h. However, its kinetic energy remains constant, so that if we define E = K + Ug, we find ∆E = −m g h. Why isn’t the total energy E conserved? 1. Because the universe is accelerating in its expansion, the object is actually at rest and not descending ... the earth moves away as fast as it moves "down." 2. An external force is doing work on the system. 3. In reality, all objects are massless, so that m = 0 and ∆E = 0. 4. The acceleration of the system is zero. 5. The net force on the system is not zero. 6. Ug is defined incorrectly as if gravity were a constant force. 7. The total energy is indeed conserved, since ∆E = ∆Ug. 8. E is useless in real-world examples like this.
Physics
1 answer:
bezimeni [28]3 years ago
5 0

Answer:

Mechanical would have been conserved if only the force of gravity (the weight of the object does work on the system). The tension force does work also on the system but negative work instead. The net force acting of the system is zero since the upward tension in the string suspending the object is equal to the weight of the object but acting in the opposite direction. As a result they cancel out. In the equation above the effect of the tension force on the object has been neglected or not taken into consideration. For the mechanical energy E to be conserved, the work done by this tension force must be included into the equation. Otherwise it would seem as though energy has been generated in some manner that is equal in magnitude to the work done by the tension force.

The conserved form of the equation is given by

E = K + Ug + Wother.

In this case Wother = work done by the tension force.

In that form the total mechanical energy is conserved.

You might be interested in
Of the following which is the largest body?
ankoles [38]

Answer:

Ganymede is the largest body

Explanation:

it is the satellite of jupiter

3 0
2 years ago
Read 2 more answers
At a department store, you adjust the mirrors in the dressing room so that they are parallel and 6.2 ft apart. You stand 1.8 ft
barxatty [35]

Answer:

<em>a) 3.6 ft</em>

<em>b) 12.4 ft</em>

Explanation:

Distance between mirrors = 6.2 ft

difference from from the mirror you face = 1.8 ft

a) you stand 1.8 ft in front of the mirror you face.

According to plane mirror rules, the image formed is the same distance inside the mirror surface as the distance of the object (you) from the mirror surface. From this,

your distance from your first "front" image = 1.8 ft + 1.8 ft = <em>3.6 ft</em>

b) The mirror behind you is 6.2 - 1.8 = 4.4 ft behind you.

the back mirror will be reflected 3.6 + 4.4 = 8 ft into the front mirror,

the first image of your back will be 4.4 ft into the back mirror,

therefore your distance from your first "back" image = 8 + 4.4 = <em>12.4 ft</em>

8 0
3 years ago
Starting from rest, a 2.1x10-4 kg flea springs straight upward. While the flea is pushing off from the ground, the ground exerts
nirvana33 [79]

Answer:

1.327363 m/s

0.00090243 m

Explanation:

u = Initial velocity

v = Final velocity

m = Mass of flea

Energy

E=\frac{1}{2}m(v^2-u^2)\\\Rightarrow 3.7\times 10^{-4}=2.1\times 10^{-4}(v^2-0)\\\Rightarrow v=\sqrt{\frac{3.7\times 10^{-4}}{2.1\times 10^{-4}}}\\\Rightarrow v=1.32736\ m/s

The velocity of the flea when leaving the ground is 1.327363 m/s

W=F\times s\\\Rightarrow s=\frac{W}{F}\\\Rightarrow s=\frac{3.7\times 10^{-4}}{0.41}\\\Rightarrow s=0.00090243\ m

The flea will travel 0.00090243 m upward

8 0
3 years ago
Maureen takes notes in class. Wave Interactions
Monica [59]
A. <span>I .................
</span>
7 0
2 years ago
Read 2 more answers
Janice has just measured the density of an object. Which value is possible? (Density: D = )
babunello [35]
It is 6 g/cm3 because density cannot be negative, and it is not speed in which the unit would be m/s.
6 0
2 years ago
Read 2 more answers
Other questions:
  • Our eyes can see the thermal radiation that our bodies radiate. T or F
    11·1 answer
  • Calculate A, E, μ, cv and S for 1 mole of Kr at 298 K and 1 atm (assuming ideal behavior)
    13·1 answer
  • What were the patterns that people saw in the sky long ago?
    10·2 answers
  • PLEASE ANSWER THANKS
    14·2 answers
  • Which of these is NOT an event that helped make the Moon as it is today?
    5·1 answer
  • An atom with a positive charge is an anion.<br> a. true<br> b. fals
    14·1 answer
  • A stone with a weight of 5.30 N is launched vertically from ground level with an initial speed of 23.0 m/s, and the air drag on
    5·1 answer
  • Please help me and i will mark u as brainlist
    10·1 answer
  • A rubber duck of volume 2,500cm3 floats in water with 20% of its volume submerged. You want to hold the duck under water so it i
    11·1 answer
  • A galvanic cell is formed when two metals are immersed in solu- tions differing in concentration 1 when two different metals are
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!