1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Citrus2011 [14]
3 years ago
13

An object of mass m is lowered at constant velocity at the end of a string of negligible mass. As it is lowered a vertical dista

nce h, its gravitational potential energy changes by ∆Ug = −m g h. However, its kinetic energy remains constant, so that if we define E = K + Ug, we find ∆E = −m g h. Why isn’t the total energy E conserved? 1. Because the universe is accelerating in its expansion, the object is actually at rest and not descending ... the earth moves away as fast as it moves "down." 2. An external force is doing work on the system. 3. In reality, all objects are massless, so that m = 0 and ∆E = 0. 4. The acceleration of the system is zero. 5. The net force on the system is not zero. 6. Ug is defined incorrectly as if gravity were a constant force. 7. The total energy is indeed conserved, since ∆E = ∆Ug. 8. E is useless in real-world examples like this.
Physics
1 answer:
bezimeni [28]3 years ago
5 0

Answer:

Mechanical would have been conserved if only the force of gravity (the weight of the object does work on the system). The tension force does work also on the system but negative work instead. The net force acting of the system is zero since the upward tension in the string suspending the object is equal to the weight of the object but acting in the opposite direction. As a result they cancel out. In the equation above the effect of the tension force on the object has been neglected or not taken into consideration. For the mechanical energy E to be conserved, the work done by this tension force must be included into the equation. Otherwise it would seem as though energy has been generated in some manner that is equal in magnitude to the work done by the tension force.

The conserved form of the equation is given by

E = K + Ug + Wother.

In this case Wother = work done by the tension force.

In that form the total mechanical energy is conserved.

You might be interested in
What does displacement describe?
Katarina [22]
<span>A vector which implies that an object has been moved or has changed its position is called displacement. Displacement is usually associated with length and direction of an imaginary straight point. It is the shortest distance from the initial point to the final point of final position (P). Displacement can also be described as the length between the final and initial point on the shortest path. It means an overall change in direction  of the object or point of a body.</span>


5 0
3 years ago
Match the following Help please ​
maxonik [38]
<h2>Amoeba / Unicellular</h2><h2>Segmented worm / Earthworm</h2><h2>Unsegment worm / Tapeworm</h2><h2>Snail / Molluscs</h2><h2>Butterfly / A pair of antenna</h2><h2 /><h3><em>Unicellular: </em><u><em>aboema</em></u><em>: a </em><u><em>one-celled</em></u><em>, microscopic organism belonging to any of several families of rhizopods that move and feed using pseudopodia and reproduce by fission</em></h3><h3><em /></h3><h3><em>Segmented worms: segmented worms include the common </em><u><em>earthworm</em></u><em> and leeches.</em></h3><h3><em /></h3><h3><u><em>Unsegented worms:</em></u><em> unsegmented Worms Phylum Platyhelminthes & Nematoda. Worms. Worms are divided into three different phyla: Phylum Platyhelminthes, the flatworms. These include marine flatworms, flukes, and </em><u><em>tapeworms</em></u><em>.</em></h3><h3><em /></h3><h3><u><em>Molluscs</em></u><em>: molluscs examples: – </em><u><em>snails</em></u><em>, slugs, limpets, whelks, conchs, periwinkles, etc. Class Bivalvia – clams, oysters, mussels, scallops, cockles, shipworms, etc. The Class Scaphopoda contains about 400 species of molluscs called tooth or tusk shells, all of which are marine.</em></h3><h3><em /></h3><h3><u><em>Antennas</em></u><em>: </em><u><em>Nearly all insects have a pair of antennae</em></u><em> on their heads. They use their antennae to touch and smell the world around them. ... Insects are the only arthropods that have wings, and the wings are always attached to the thorax, like the legs.</em></h3>
7 0
3 years ago
Can any one answer these two
dalvyx [7]

) (2.68 x 10¯5) x (4.40 x 10¯8)

The calculator display gives 1.1792 x 10¯12. Rounded off to three significant figures gives 1.18 x 10¯12 as the answer.

2) (2.95 x 107) ÷ (6.28 x 1015)

The calculator display gives 4.6975 x 10¯9. Rounded off to three significant figures gives 4.70 x 10¯9 as the answer.

3) (8.41 x 106) x (5.02 x 1012)

The calculator display gives 4.2218 x 1019. Rounded off to three significant figures gives 4.22 x 1019 as the answer.

When done as a division, the answer to this problem is 1.68 x 10¯6.

4) (9.21 x 10¯4) ÷ (7.60 x 105)

The calculator display gives 1.2118 x 10¯9. Rounded off to three significant figures gives 1.21 x 10¯9 as the answer.

1) (2.68 x 10¯5) x (4.40 x 10¯8)

The calculator display gives 1.1792 x 10¯12. Rounded off to three significant figures gives 1.18 x 10¯12 as the answer.

2) (2.95 x 107) ÷ (6.28 x 1015)

The calculator display gives 4.6975 x 10¯9. Rounded off to three significant figures gives 4.70 x 10¯9 as the answer.

3) (8.41 x 106) x (5.02 x 1012)

The calculator display gives 4.2218 x 1019. Rounded off to three significant figures gives 4.22 x 1019 as the answer.

When done as a division, the answer to this problem is 1.68 x 10¯6.

4) (9.21 x 10¯4) ÷ (7.60 x 105)

The calculator display gives 1.2118 x 10¯9. Rounded off to three significant figures gives 1.21 x 10¯9 as the answer

7 0
2 years ago
A stone was dropped off a cliff and hit the ground with a speed of 96 ft/s. What is the height of the cliff? (Use 32 ft/s2 for t
nadezda [96]
The initial velocity of the stone is 0 ft/s. Given the initial velocity (Vi), final velocity (Vf), and acceleration due to gravity (g), the distance may be calculated through the equation,
                                     d = ((Vf)² - (Vi)²) / 2g
Substituting the known values,
                                     d = ((96 ft/s)² - 0))/ (2x32.2)
The value of d is 143.10 ft. 
4 0
3 years ago
How does a parallel circuit differ from a series circuit?
8_murik_8 [283]
I think the correct answer from the choices listed above is option B. A parallel circuit differ from a series circuit in a sense that a <span>series circuit has one path for electrons, but a parallel circuit has more than one path. In a parallel circuit there two or more paths for current to flow while a series circuit only has one.</span>
5 0
3 years ago
Other questions:
  • A typical machine tests the tensile strength of a sheet of material cut into a standard size of 5.00 centimeters wide by 10.0 ce
    12·1 answer
  • The index of refraction for red light in a certain liquid is 1.303; the index of refraction for violet light in the same liquid
    14·1 answer
  • The passing of the Moon directly between Earth and the Sun is a/an
    5·1 answer
  • Think of a skateboarder riding down a hill. Once the skateboarder reaches the bottom of the hill, if she does not manually add m
    9·2 answers
  • How do scientists learn about the brain.
    15·2 answers
  • What are the three longest wavelengths for standing sound waves in a 121-cm-long tube that is (a) open at both ends and (b) open
    12·1 answer
  • The most abundant element in earth's continental crust (by weight) is____?
    7·2 answers
  • An electric field’s direction points from the bottom of the screen (or paper) to the top of the screen. If you place an electron
    13·1 answer
  • Pulling a rubber band back and then letting it fly across the room is an example of
    13·1 answer
  • 9. Name an object that has a great mass but has a small volume​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!