Hello, I see you are in a jam. Lemme help.
1.) True
2.) True
3.) True
4.) True
5.) True
LOL these are all true ;)
Answer:
1 kg
Explanation:
The container has negligible mass and no heat is loss to the surrounding.
Mass of ice = 0.4kg, initial temperature of ice = -29oC, final temperature of the mixture = 26oC, mass of water (m2) = ?kg, initial temperature of water = 80oC, c ( specific heat capacity of water ) = 4200J/kg.K, Lf = heat of fusion of water = 3.36 × 10^5 J/kg
Using the formula:
Quantity of heat gain by ice = Quantity of heat loss by water
Quantity of heat gain by ice = mass of ice × heat of fusion of ice + mass of water × specific heat capacity of water = (0.4 × 3.36 × 10^ 5) + (0.4 × 4200 × (26- (-29) = 13.44 × 10^4 + 9.24 × 10^ 4 = 22.68 × 10^4 J
Quantity of heat loss by water = m2cΔT
Quantity of heat loss by water = m2 ×4200× (80 - 26) = m(226800)
since heat gain = heat loss
22.68 × 10^4 = 226800 m2
divide both side by 226800
226800 / 226800 = m2
m2 = 1 kg
Explanation:
Area of ring 
Charge of on ring 
Charge on disk

![\begin{aligned}d v &=\frac{k d q}{\sqrt{x^{2}+a^{2}}} \\&=2 \pi-k \frac{a d a}{\sqrt{x^{2}+a^{2}}} \\v(1) &=2 \pi c k \int_{0}^{R} \frac{a d a}{\sqrt{x^{2}+a^{2}}} \cdot_{2 \varepsilon_{0}}^{2} R \\&=2 \pi \sigma k[\sqrt{x^{2}+a^{2}}]_{0}^{2} \\&=\frac{2 \pi \sigma}{4 \pi \varepsilon_{0}}[\sqrt{z^{2}+R^{2}}-(21)] \\&=\frac{\sigma}{2}(\sqrt{2^{2}+R^{2}}-2)\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7Dd%20v%20%26%3D%5Cfrac%7Bk%20d%20q%7D%7B%5Csqrt%7Bx%5E%7B2%7D%2Ba%5E%7B2%7D%7D%7D%20%5C%5C%26%3D2%20%5Cpi-k%20%5Cfrac%7Ba%20d%20a%7D%7B%5Csqrt%7Bx%5E%7B2%7D%2Ba%5E%7B2%7D%7D%7D%20%5C%5Cv%281%29%20%26%3D2%20%5Cpi%20c%20k%20%5Cint_%7B0%7D%5E%7BR%7D%20%5Cfrac%7Ba%20d%20a%7D%7B%5Csqrt%7Bx%5E%7B2%7D%2Ba%5E%7B2%7D%7D%7D%20%5Ccdot_%7B2%20%5Cvarepsilon_%7B0%7D%7D%5E%7B2%7D%20R%20%5C%5C%26%3D2%20%5Cpi%20%5Csigma%20k%5B%5Csqrt%7Bx%5E%7B2%7D%2Ba%5E%7B2%7D%7D%5D_%7B0%7D%5E%7B2%7D%20%5C%5C%26%3D%5Cfrac%7B2%20%5Cpi%20%5Csigma%7D%7B4%20%5Cpi%20%5Cvarepsilon_%7B0%7D%7D%5B%5Csqrt%7Bz%5E%7B2%7D%2BR%5E%7B2%7D%7D-%2821%29%5D%20%5C%5C%26%3D%5Cfrac%7B%5Csigma%7D%7B2%7D%28%5Csqrt%7B2%5E%7B2%7D%2BR%5E%7B2%7D%7D-2%29%5Cend%7Baligned%7D)
Note: Refer the image attached
For this case we must do a conversion. By definition we have to:
1 inch equals 2.54 centimeters
1 day equals 24 hours.
So, we have:
Canceling units we have:


Answer:
