Well, the rings surrounding a planet are made out of rock. A ring surrounding the sun would be impossible since the sun can reach more than 27 million degrees Fahrenheit (15 million degrees Celsius.)
Hope this helped.
To solve this problem it is necessary to apply the concepts related to Newton's second Law and the force of friction. According to Newton, the Force is defined as
F = ma
Where,
m= Mass
a = Acceleration
At the same time the frictional force can be defined as,

Where,
Frictional coefficient
N = Normal force (mass*gravity)
Our values are given as,

By condition of Balance the friction force must be equal to the total net force, that is to say



Re-arrange to find acceleration,



Therefore the acceleration the horse can give is 
Answer:
A measured force of (46.5 0.8 N ) would not be in agreement with a theoretically calculated force of (48.4 0.6 N )
Explanation:
From the question we are told that
Measured force is ![F_M = [46.5 \pm 0.8 \ N ]](https://tex.z-dn.net/?f=F_M%20%20%3D%20%20%5B46.5%20%5Cpm%200.8%20%5C%20%20N%20%5D)
Calculated force is ![F_c = [48.4 \pm 0.6 \ N ]](https://tex.z-dn.net/?f=F_c%20%3D%20%20%5B48.4%20%5Cpm%200.6%20%5C%20%20N%20%5D)
Generally the measured force in interval form is

=> 
Generally the calculated force in interval form is

=> 
Generally looking both interval we see that they do not intersect at any point Hence
A measured force of (46.5 0.8 N ) would not be in agreement with a theoretically calculated force of (48.4 0.6 N )