Answer:
3.5m/s^2
Explanation:
From Newton's second Law of Motion
F = ma
Where F is the applied force, m is the mass of the object and a is the acceleration.
F = 350 N
Mass = 100kg
350N = 100×a
a = 350/100
a = 3.5m/s^2
The acceleration of the object will be 3.5m/s^2
Deposition is the process in which sediments, soil and rocks are added to a landform or landmass. When previous weathers surface material , is deposited to a building layer of sediment .
Divide CFU of Dilution. Divide the CFU of the dilution (the number of colonies you counted) by the result from step 4. For this example, you work out 46 ÷ 1/1000, which is the same as 46 x 1,000. The result is 46,000 CFU in the original sample.
Answer:
61.33 Kg
Explanation:
From the question given above, the following data were obtained:
Distance = 1×10² m
Time = 9.5 s
Kinetic energy (KE) = 3.40×10³ J
Mass (m) =?
Next, we shall determine the velocity Leroy Burrell. This can be obtained as follow:
Distance = 1×10² m
Time = 9.5 s
Velocity =?
Velocity = Distance / time
Velocity = 1×10² / 9.5
Velocity = 10.53 m/s
Finally, we shall determine the mass of Leroy Burrell. This can be obtained as follow:
Kinetic energy (KE) = 3.40×10³ J
Velocity (v) = 10.53 m/s
Mass (m) =?
KE = ½mv²
3.40×10³ = ½ × m × 10.53²
3.40×10³ = ½ × m × 110.8809
3.40×10³ = m × 55.44045
Divide both side by 55.44045
m = 3.40×10³ / 55.44045
m = 61.33 Kg
Thus, the mass of Leroy Burrell is 61.33 Kg
Copper is the best material