Answer:

Explanation:
The acceleration due to gravity on the surface of the Earth is given by:

where
G is the gravitational constant
M is the mass of the Earth
R is the radius of the Earth
Here we want to find the new Earth radius R' for which the gravitational acceleration at the surface, g', would be 3 times the current value of g:

So we would have

Solving the equation for R', we find

Answer:
2.846m
Explanation:
The diver is performing projectile motion.
To find x(final), we are going to use the equation x(final) = v(initial)*t + x(initial)
x(initial) = 0
x(final) = ?
v(initial) = 2.3 m/s
we don't know t
To find t we will use y(final) = 1/2*(-9.8)*t^2 + v(initial in the y dir.)*t + y(initial)
- 9.8 in the acceleration in the y dir.
y(final) = 0
y(initial) = 7.5
v(initial in the y dir.) = 0
If we solve for t we get: t = 1.237s
Now we have all the components to solve for x(final) in x(final) = v(initial)*t + x(initial)
x(final) = 2.3*1.237 + 0
x(final) = 2.846m
Like windmills they use the winds to generate their power.
Answer:
Q=∆U+W
Explanation:
work done+ change in internal energy = heat supplied to change the internal energy
(1st law of thermodynamics)
Answer: The answer is B
Explanation:
Work can be defined as the energy that is required to apply a force to an object in order to move it from one point to another. In physics, work = force x distance travelled. On the other hand, Power is the work done per time. In other words, it the rate at which work is done and is determined by using the formula, Power = Work/time. In these relationships, it can be seen that power is directly proportional to the amount of work done, hence as power increases, more work is done.