The hockey player is moving at a speed of 9. 5 m/s. if it takes him 2 seconds to come to a stop under constant acceleration, will be s = 9.5 m.
The branch of physics that defines motion with respect to space and time, ignoring the cause of that motion, is known as kinematics. Kinematics equations are a set of equations that can derive an unknown aspect of a body’s motion if the other aspects are provided.
These equations link five kinematic variables:
Displacement (denoted by Δx)
Initial Velocity v0
Final Velocity denoted by v
Time interval (denoted by t)
Constant acceleration (denoted by a)
These equations define motion at either constant velocity or at constant acceleration. Because kinematics equations are only applicable at a constant acceleration or a constant speed, we cannot use them if either of the two is changing.
v = u + at
0 = 9.5 + a (2)
a = - 9.5 /2 m/
=
+ 2as
0 =
+ 2* (- 9.5 /2) * s
-
= - 9.5 s
s = 9.5 m
To learn more about kinematics here
brainly.com/question/27126557
#SPJ4
Answer:
Mass of natural gas needed to heat the room is 350,000BTUs
Explanation:
The heating efficiency of a furnace is never 100% because not all energy is released and not all heat is available to heat the place. A lesser efficiency requires more consumption of fuel. Heating values are used for heating fuels in order to calculate the mass of fuel needed.
The heating value of natural gas is 1,000,000BTUs
Therefore the formular for calculating mass of natural gas needed= Heating value of natural gas×efficiency.
Mass=1,000,000×0.35
Mass=350,000BTUs
By definition, centripetal acceleration is given by:

Where,
v: tangential disk speed
r: disk radius
Substituting values in the given equation we have:

Rounding the result we have:

Answer:
The centripetal acceleration of the disc edge in m/s^2 is:

This is True, cars with the same velocity must have the exact same speed.