What is the question asking
Question is not complete and the missing part is;
A coin of mass 0.0050 kg is placed on a horizontal disk at a distance of 0.14 m from the center. The disk rotates at a constant rate in a counterclockwise direction. The coin does not slip, and the time it takes for the coin to make a complete revolution is 1.5 s.
Answer:
0.828 m/s
Explanation:
Resolving vertically, we have;
Fn and Fg act vertically. Thus,
Fn - Fg = 0 - - - - eq(1)
Resolving horizontally, we have;
Ff = ma - - - - eq(2)
Now, Fn and Fg are both mg and both will cancel out in eq 1.
Leaving us with eq 2.
So, Ff = ma
Now, Frictional force: Ff = μmg where μ is coefficient of friction.
Also, a = v²/r
Where v is linear speed or velocity
Thus,
μmg = mv²/r
m will cancel out,
Thus, μg = v²/r
Making v the subject;
rμg = v²
v = √rμg
Plugging in the relevant values,
v = √0.14 x 0.5 x 9.8
v = √0.686
v = 0.828 m/s
A change in color, a formation of gas or bubbles, temperature change.
The board is 2.50m high.
Why?
We can calculate how high was the board applying the Law of Conservation of Mechanical Energy. This Law states that the mechanical energy (kinematic and potential) will be conserved during the motion.
It can be described with the following formula:


At the top of the boar, the kinetic energy is equal to 0.
At the water, the potential energy is equal to 0.
So,

Hence, we have that the board is 2.50m high.
Have a nice day!
<h2>
The average force acting on the ball is 1075 N in the direction of travel of ball.</h2>
Explanation:
Force is given by rate of change of momentum.
Mass of soccer ball = 430 g = 0.43 kg
Initial velocity = 0 m/s
Final velocity = 25 m/s
Change in momentum = 0.43 x 25 - 0.43 x 0
Change in momentum = 10.75 kg m/s
Time taken = 0.01 s
Rate of change of momentum = Change in momentum ÷ Time
Rate of change of momentum = 10.75 ÷ 0.01
Rate of change of momentum = 1075 N
Force = 1075 N
The average force acting on the ball is 1075 N in the direction of travel of ball.