Complete Question
An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The electric field in the wire changes with time as E(t)=0.0004t2−0.0001t+0.0004 newtons per coulomb, where time is measured in seconds.
I = 1.2 A at time 5 secs.
Find the charge Q passing through a cross-section of the conductor between time 0 seconds and time 5 seconds.
Answer:
The charge is 
Explanation:
From the question we are told that
The diameter of the wire is 
The radius of the wire is 
The resistivity of aluminum is 
The electric field change is mathematically defied as

Generally the charge is mathematically represented as

Where A is the area which is mathematically represented as

So

Therefore

substituting values
![Q = 120 \int\limits^{t}_{0} { [ 0.0004t^2 - 0.0001t +0.0004] } \, dt](https://tex.z-dn.net/?f=Q%20%3D%20120%20%5Cint%5Climits%5E%7Bt%7D_%7B0%7D%20%7B%20%5B%200.0004t%5E2%20-%200.0001t%20%2B0.0004%5D%20%7D%20%5C%2C%20dt)
![Q = 120 [ \frac{0.0004t^3 }{3} - \frac{0.0001 t^2}{2} +0.0004t] } \left | t} \atop {0}} \right.](https://tex.z-dn.net/?f=Q%20%3D%20120%20%5B%20%5Cfrac%7B0.0004t%5E3%20%7D%7B3%7D%20-%20%5Cfrac%7B0.0001%20t%5E2%7D%7B2%7D%20%2B0.0004t%5D%20%7D%20%20%5Cleft%20%7C%20t%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
From the question we are told that t = 5 sec
![Q = 120 [ \frac{0.0004t^3 }{3} - \frac{0.0001 t^2}{2} +0.0004t] } \left | 5} \atop {0}} \right.](https://tex.z-dn.net/?f=Q%20%3D%20120%20%5B%20%5Cfrac%7B0.0004t%5E3%20%7D%7B3%7D%20-%20%5Cfrac%7B0.0001%20t%5E2%7D%7B2%7D%20%2B0.0004t%5D%20%7D%20%20%5Cleft%20%7C%205%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
![Q = 120 [ \frac{0.0004(5)^3 }{3} - \frac{0.0001 (5)^2}{2} +0.0004(5)] }](https://tex.z-dn.net/?f=Q%20%3D%20120%20%5B%20%5Cfrac%7B0.0004%285%29%5E3%20%7D%7B3%7D%20-%20%5Cfrac%7B0.0001%20%285%29%5E2%7D%7B2%7D%20%2B0.0004%285%29%5D%20%7D)

Answer:
350.72 m/s
Explanation:
Formula for velocity of wave is;
v = fλ
Where;
v is speed
f is frequency
λ is wavelength
We are given;
f = 512 Hz
λ = 0.685 m
Thus;
v = 512 × 0.685
v = 350.72 m/s
<em>The correct answer is option</em><em> B.</em> The maximum height that can be reached by the stone is determined as 11.5 m.
<h3>
Maximum height attained by the stone </h3>
The maximum height attained by the stone when it is a 2/3 of its total height is calculated as follows;
v² = u² - 2gh
where;
- v is final velocity at maximum height, v = 0
- u is initial velocity
- g is acceleration due to gravity
0 = u² - 2gh
2gh = u²
h = u²/2g
h = (15²)/(2 x 9.8)
h = 11.48 m
h = 11.5 m
Thus, the maximum height that can be reached by the stone is determined as 11.5 m
Learn more about maximum height here: brainly.com/question/12446886
#SPJ1
Sound intensity = 1/(r^2)
That is Sound intensity is indirectly proportional to the distance. Therefore, sound becomes 9 times less intense.