1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
solniwko [45]
3 years ago
13

In the following diagram, the voltage is 1.5 volts and the resistance is 3.0 ohms. Use Ohm's law to determine the current in the

circuit. A) 0.50 amps B) 4.5 amps C) 2.0 amps D) 1.5 amps
Physics
2 answers:
xxMikexx [17]3 years ago
6 0

Answer:

Option (A)

Explanation:

According to Ohm's law, at constant temperature, the current flowing through a conductor is directly proportional to the potential difference applied across the conductor.

V = IR

Where I be the current and R be the resistance.

So, according to the questions

1.5 = I × 3

I = 0.5 A

photoshop1234 [79]3 years ago
3 0

Current = Voltage/Resistance

             = 1.5/3

Current = 0.5 amps - A

You might be interested in
A gold wire that is 1.8 mm in diameter and 15 cm long carries a current of 260 mA. How many electrons per second pass a given cr
Musya8 [376]

Answer:

162500000.  

Explanation:

Given that

Diameter of the wire , d= 1.8 mm

The length of the wire ,L = 15 cm

Current ,I = 260 m A

The charge on the electron ,e= 1.6 x 10⁻¹⁹ C

We know that Current I is given as

I=\dfrac{q}{t}

I=Current

q=Charge

t=time

q= I t

q= 260 m t

The total number of electron = n

q= n e

n=\dfrac{260\times 10^{-3}\ t}{1.6\times 10^{-9}}

n=162500000 t

\dfrac{n}{t}=16250000

The number of electron passe per second will be 162500000.

4 0
3 years ago
What mass of water must evaporate from the skin of a 70.0 kg man to cool his body 1.00 ∘C? The heat of vaporization of water at
romanna [79]

Answer:

100 cc

Explanation:

Heat released in cooling human body by t degree

= mass of the body x specific heat of the body x t

Substituting the data given

Heat released by the body

= 70 x 3480 x 1

= 243600 J

Mass of water to be evaporated

= 243600 / latent heat of vaporization of water

= 243600 / 2420000

= .1 kg

= 100 g

volume of water

= mass / density

= 100 / 1

100 cc

1 / 10 litres.

6 0
3 years ago
Light with a wavelength of 725 nm passes through the slits of a double-slit experiment. The slits of the experiment are a distan
crimeas [40]

Answer:

3.10°

Explanation:

I took the test

6 0
2 years ago
Read 2 more answers
1.a bag is dropped from a hovering helicopter. the bag has fallen for 2 s. what is the ball's velocity at the instant its hittin
omeli [17]

1. The bag's velocity immediately before hitting the ground.

Recall this kinematics equation:

Vf = Vi + aΔt

Vf is the final velocity, Vi is the initial velocity, a is the acceleration, and Δt is the time elapsed.

Given values:

Vi = 0m/s (you assume this because the bag is dropped, so it falls starting from rest)

a is 9.81m/s² (this is the near-constant acceleration of objects near the surface of the earth)

Δt = 2s

Plug in the values and solve for Vf:

Vf = 0 + 9.81×2

Vf = 19.62m/s

2. The height of the helicopter.

Recall this other kinematics equation:

d = ViΔt + 0.5aΔt²

d is the distance traveled by the object, Vi is the initial velocity, a is the acceleration, and Δt is the time elapsed.

Given values:

Vi = 0m/s (bag is dropped starting from rest)

a = 9.81m/s² (acceleration due to gravity of the earth)

Δt = 2s

Plug in the values and solve for d:

d = 0×2 + 0.5×9.81×2²

d = 19.62m

3. Time of the bag's fall and its velocity immediately before hitting the ground... if it started falling at 2m/s

Reuse the equation from question 2:

d = ViΔt + 0.5aΔt²

Given values:

d = 19.6m (height of the helicopter obtained from question 2)

Vi = 2m/s

a = 9.81m/s² (acceleration due to earth's gravity)

Plug in the values and solve for Δt:

19.6 = 2Δt + 0.5×9.81Δt²

4.91Δt² + 2Δt - 19.6 = 0

Use the quadratic formula to get values of Δt (a quick Google search will give you the formula and how to use it to solve for unknown values):

Δt = 1.8s, Δt = −2.2s

The formula gives us 2 possible answers for Δt but within the situation of our problem, only the positive value makes sense. Reject the negative value.

Δt = 1.8s

Now we can use this new value of Δt to get the velocity before hitting the ground:

Vf = Vi + aΔt

Given values:

Vi = 2m/s

a = 9.81m/s²

Δt = 1.8s (result from previous question)

Plug in the values and solve for Vf:

Vf = 2 + 9.81×1.8

Vf = 19.66m/s

4 0
3 years ago
Alice suffered a minor electrical shock as she switched on her bathroom light. She is concerned and wants to prevent it from hap
snow_tiger [21]
Get a pull chord light switch installed in her bathroom by a qualified electrician asap. Meanwhile, keep hands as dry as possible, and try not to go near that switch until it's either been properly earthed, or whatever the problem actually is, and get qualified advice on what the problem is. Don't have wet feet either, and don't stand in puddles of water whilst operating - i she has to - the switch. 250V AC mains can be lethal, and at least painful.
7 0
3 years ago
Read 2 more answers
Other questions:
  • A xenon arc lamp is covered with an interference filter that only transmits light of 400-nm wavelength. When the transmitted lig
    10·2 answers
  • How are
    5·1 answer
  • Gravitational force is a(n)? A) attractive force B) repulsive force C) both an attractive and repulsive force D) neither an attr
    10·1 answer
  • I need help ASAP. This is for 15 points
    8·1 answer
  • Help with these questions
    5·1 answer
  • Land, labor, and capital are examples of...​
    14·1 answer
  • Warm air:
    7·2 answers
  • Collision Lab
    10·2 answers
  • Which of the following is true of alternating current? Select all that apply.
    13·1 answer
  • A box is being dragged across the floor at a constant speed by a rope pulling horizontally on it. friction is not negligible. id
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!