Answer:
A
Explanation:
Autotrophs utilize the energy from sunlight to reduce carbon dioxide to carbohydrates (glucose). The energy from the sunlight is used to split water into H+ and O2- and the H+ used in the reduction process. The labeled carbon in the carbon dioxide will, therefore, be incorporated by the autotrophs in the carbohydrates made in photosynthesis.
The specific heat : c = 0.306 J/g K
<h3>Further explanation</h3>
Given
Heat = 35.2 J
Mass = 16 g
Temperature difference : 7.2 K =
Required
The specific heat
Solution
Heat can be calculated using the formula:
Q = mc∆T
Q = heat, J
m = mass, g
c = specific heat, joules / g ° C
∆T = temperature difference, ° C / K
Input the value :
c = Q / m.∆T
c = 35.2 / 16 x 7.2
c = 0.306 J/g K
c is the answer a benzene
I think the correct answer from the choices listed above is the second option. When we say an object is hot, we are describing its thermal energy. It<span> is the </span>energy<span> that comes from heat. This heat is generated by the movement of tiny particles within an object. </span> Hope this answers the question.
Answer:
See below :)
Explanation:
There is an evident reason why some of the solutions Carson's has listed and observed, does conduct electricity and some that do.
A flow of electrical charge is called an electric current. Ions are atoms, or sets of atoms, that contain an electrical charge. There are two types of ions, cation or a positively charged ion containing a deficiency of electrons, and anion or a negatively charged ion which contains a surplus of electrons. When a solution conducts electricity the charge is carried within by ions that move through the solution. The larger the number of ions in the solution, the better the conductivity of the solution is. Pure water does not conduct very well because it contains very few ions, but when table salt (NaCl) is dissolved in the water, this solution does conduct well because the solution contains a more abundance of ions. The majority of the ions come from the table salt, chemically names sodium chloride. Because Sodium contains its sodium ions, and these are positive charge and chloride ions which is a negative charge, it is called an ionic substance. Not every substance is made up of ions, one such example is sugar (C12H22O11). Sugar is made up of uncharged particles also called molecules. Although sugar is a substance its molecules do not hold a charge, thus when sugar is dissolved in water, the solution does not conduct electricity, due to the lack of ions in the solution.
Therefore, depending on the ions that make up the compound, the substance would or would not conduct electricity.