<span>The difference in the energy exerted by an 8.0 earthquake compared to a 6.0 earthquake
A magnitude 8.0 earthquake is 100 times bigger and 1000 times stronger (energy released) than a magnitude 6.0 earthquake.
</span>
The balanced form of the chemical equation shown is N₂(g) + 3H₂(g) → 2NH3(g) (option A).
<h3>What is a balanced equation?</h3>
A chemical equation is said to be balanced when the number of atoms of each element on both sides of the equation is the same.
According to this question, the chemical equation between nitrogen and hydrogen is given as follows: N₂(g) + H₂(g) → NH3(g)
The balanced form of the chemical equation shown is N₂(g) + 3H₂(g) → 2NH3(g).
Learn more about balanced equation at: brainly.com/question/7181548
#SPJ1
Answer:
The rate at which ammonia is being produced is 0.41 kg/sec.
Explanation:
Haber reaction
Volume of dinitrogen consumed in a second = 505 L
Temperature at which reaction is carried out,T= 172°C = 445.15 K
Pressure at which reaction is carried out, P = 0.88 atm
Let the moles of dinitrogen be n.
Using an Ideal gas equation:


According to reaction , 1 mol of ditnitrogen gas produces 2 moles of ammonia.
Then 12.1597 mol of dinitrogen will produce :
of ammonia
Mass of 24.3194 moles of ammonia =24.3194 mol × 17 g/mol
=413.43 g=0.41343 kg ≈ 0.41 kg
505 L of dinitrogen are consumed in 1 second to produce 0.41 kg of ammonia in 1 second. So the rate at which ammonia is being produced is 0.41 kg/sec.
The biological molecules that transport other substances are the proteins.
<h3>What are proteins?</h3>
Proteins are biological macromolecules that contains nitrogen in their molecules and are the building block of a living organism.
The proteins perform the following functions:
- they transport other substances,
- provide structural support,
- cause the movement of muscles, and
- catalyze chemical reactions in living organisms.
Learn more about protein here:
brainly.com/question/10058019
#SPJ1