For an aqueous solution of MgBr2, a freezing point depression occurs due to the rules of colligative properties. Since MgBr2 is an ionic compound, it acts a strong electrolyte; thus, dissociating completely in an aqueous solution. For the equation:
ΔTf<span> = (K</span>f)(<span>m)(i)
</span>where:
ΔTf = change in freezing point = (Ti - Tf)
Ti = freezing point of pure water = 0 celsius
Tf = freezing point of water with solute = ?
Kf = freezing point depression constant = 1.86 celsius-kg/mole (for water)
m = molality of solution (mol solute/kg solvent) = ?
i = ions in solution = 3
Computing for molality:
Molar mass of MgBr2 = 184.113 g/mol
m = 10.5g MgBr2 / 184.113/ 0.2 kg water = 0.285 mol/kg
For the problem,
ΔTf = (Kf)(m)(i) = 1.86(0.285)(3) = 1.59 = Ti - Tf = 0 - Tf
Tf = -1.59 celsius
Its reversible, soluble, <span>mass, density, color, boiling point, temperature, and volume. </span>
Answer:
A hurricane can cause extreme damage to the biosphere and the geosphere. A hurricane can leave water standing therefore sinking itself into the geosphere. The biosphere can be permanently effected because it can kill, injure, and destroy the biosphere and what the biosphere creates (buildings, parks).
Explanation:
There chemical reactions that can realise or absorb gas to the atmosphere. This means it is harder or impossible to measure it with normal weighing devices and normal taring equipment. As a principal in chemical reactions we have conservation of mass.
Speed is calculated using the formula distance divided by time. For a distance of 26.2 miles, and a time of 3 hours and 40 minutes, we first convert the time to make it solely in terms of hours. 40 minutes is 2/3 of an hour, so this is a total time of 3 2/3 or 11/3 hours. If we divide 26.2 miles by 11/3 hours, we get a resulting speed of 7.14 miles/hour.