Density is defined as mass per unit volume so even when you cut an object in half unit volume does not change so each part would have a different density even if it’s cut into the same pieces
Answer:
The answer is 916.67 g
Explanation:
48.0 wt% NaOH means that there are 48 g of NaOH in 100 g of solution. With this information and the molecular weight of NaOH (40 g/mol), we can calculate the number of mol there are in 100 g of this solution:
x
= 0.012 mol NaOH/100 g solution
Finally, we need 0.11 mol in 1 liter of solution to obtain a 0.11 M NaOH solution.
0.012 mol NaOH ------------ 100 g solution
0.11 mol NaOH------------------------- X
X= 0.11 mol NaOH x 100 g/ 0.012 mol NaOH= 916.67 g
We have to weigh 916.67 g of 48.0%wt NaOH and dilute it in a final volume of 1 L of water to obtain a 0.11 M NaOH solution.
The reaction between HNO3 and Ba(OH)2 is given by the equation below;
2HNO3 + Ba(OH)2 = Ba(NO3)2 + 2H2O
Moles of Barium hydroxide used;
= 0.200 × 0.039 l
= 0.0078 Moles
The mole ratio of HNO3 and Ba(OH)2 is 2: 1
Therefore; moles of nitric acid used will be;
= 0.0078 ×2 = 0.0156 moles
But; 0.0156 moles are equal to a volume of 0.10
The concentration of Nitric acid will be;
= (0.0156 × 1)/0.1
= 0.156 M
Answer:
For the Extra Credit Question your answer is 6.307e+9
Explanation:
To relate the quantity of a substance to the amount of heat transferred and heat capacity, temperature, number of moles is given by
q=ncpΔT
where
n is number of moles
cp is molar heat capacity
ΔT=Tfinal−Tinitial is the temperature difference