2e min :)) pls park braliest
Answer:
c. 48 cm/s/s
Explanation:
Anna Litical and Noah Formula are experimenting with the effect of mass and net force upon the acceleration of a lab cart. They determine that a net force of F causes a cart with a mass of M to accelerate at 48 cm/s/s. What is the acceleration value of a cart with a mass of 2M when acted upon by a net force of 2F?
from newtons second law of motion ,
which states that change in momentum is directly proportional to the force applied.
we can say that
f=m(v-u)/t
a=acceleration
t=time
v=final velocity
u=initial velocity
since a=(v-u)/t
f=m*a
force applied is F
m =mass of the object involved
a is the acceleration of the object involved
f=m*48.........................1
in the second case ;a mass of 2M when acted upon by a net force of 2F
f=ma
a=2F/2M
substituting equation 1
a=2(M*48)/2M
a=. 48 cm/s/s
Explanation:
Let
is the mass of proton. It is moving in a circular path perpendicular to a magnetic field of magnitude B.
The magnetic force is balanced by the centripetal force acting on the proton as :

r is the radius of path,

Time period is given by :


Frequency of proton is given by :

The wavelength of radiation is given by :


So, the wavelength of radiation produced by a proton is
. Hence, this is the required solution.
Answer:

Explanation:
The electric flux is defined as the multiple of electric field and the area that the electric field passes through, such that

When calculating the electric flux, the angle between the directions of electric field and the area becomes important, especially if the angle is changing with time.
The above formula can be rewritten as follows

where θ is the angle between the electric field and the area of the loop. Note that, the direction of the area of the loop is perpendicular to the plane of the loop.
If the loop is rotating with constant angular velocity ω, then the angle can be written as follows

At t = 0, cos(0) = 1 and the electric flux through the loop is at its maximum value.
Therefore the electric flux can be written as a function of time
