1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marysya [2.9K]
3 years ago
7

A record is dropped vertically onto a freely rotating (undriven) turntable. Frictional forces act to bring the record and turnta

ble to a common angular speed. If the rotational inertia of the record is 0.61 times that of the turntable, what percentage of the initial kinetic energy is lost
Physics
1 answer:
alexgriva [62]3 years ago
4 0

Answer:

The loss of initial Kinetic energy = 37.88 %

Explanation:

Given:

Rotational inertia of the turntable = I_t

Rotational inertia (I_r) of the record = 0.61\times I_t

According to the question:

<em>Frictional forces act to bring the record and turntable to a common angular speed.</em>

So,angular momentum will be conserved as it is an inelastic collision.

Considering the initial and final angular velocity of the turn table as  \omega _i\  ,\  \omega_f respectively.

Note :

Angular momentum (L) = Product of moment of inertia  (I)  and angular velocity (\omega) .  

Lets say,

⇒ initial angular momentum = final angular momentum

⇒  L_i=L_f

⇒ (I_t)\times \omega_i = (I_t+I_r)\times \omega_f

⇒ \omega _f=\frac{I_t}{I_t+I_r} \times (\omega_i) ...equation (i)

Now we will find the ratio of the Kinetic energies.

⇒ K_i=\frac{I_t\times \omega_i^2}{2}       ⇒ K_f=\frac{(I_r+I_t)\times \omega_f^2}{2}

Their ratios:

⇒ \frac{K_f}{K_i} =\frac{\frac{(I_t+I_r)\times \omega_f^2}{2} }{\frac{I_t\times \omega_i^2}{2} }    

⇒ \frac{K_f}{K_i} = {\frac{(I_t+I_r)\times \omega_f^2}{2} } \times {\frac{2}{I_t\times \omega_i^2}}

Plugging the values of  \omega _f^2 as \omega _f^2 =(\frac{I_t}{I_t+I_r} \times \omega_i\ )^2 from equation (i) in the ratios of the Kinetic energies.

⇒ \frac{K_f}{K_i} =\frac{(I_t+I_r)\times \frac{(I_t)^2}{(I_t+I_r)^2} \times \omega_i^2}{I_t\times \omega_i^2} =\frac{(I_t)^2}{(I_t+I_r)}\times \frac{1}{I_t}=\frac{I_t}{I_t+I_r}

Now,

The Kinetic energy lost in fraction can be written as:

⇒ \frac{K_f-K_i}{K_i}

Now re-arranging the terms.

\frac{K_f-K_i}{K_i}  =(\frac{K_f}{K_i} -1)= \frac{I_t}{I_t+I_r} -1=\frac{I_t-I_t-I_r}{I_t+I_r} =\frac{-I_r}{(I_t+I_r)}

Plugging the values of  I_r and I_t .

⇒ \frac{K_f}{K_i} = \frac{-0.61I_t}{0.61I_t+I_t} =\frac{-0.61}{1.61} =-0.3788

To find the percentage we have to multiply it with 100 and here negative means for loss of Kinetic energy.

⇒ \frac{K_f}{K_i} = =-0.3788\times 100= 37.88

So the percentage of the initial Kinetic energy lost is 37.88

You might be interested in
The two types of waves are ……………………………………wave and …………………………
Annette [7]

Answer:

longitudinal and transverse.

Explanation:

plzzzzzzz Mark my answer in brainlist

4 0
2 years ago
A position vector with magnitude 10 m points to the right and up. its x-component is 6.0 m. part a what is the value of its y-co
lidiya [134]

The position vector can be transcribed as:

A<span> = 6 i + y j                           </span>

i <span>points in the x-direction and j points in the y-direction.</span>

The magnitude of the vector is its dot product with itself:

<span>|A|2 = A·A</span>

<span>102  = (6 i + y j)•(6 i+ y j)            Note that i•j = 0, and  i•i  = j•j = 1 </span>

<span>100  = 36 + y2       </span>

<span>64    = y2</span>

<span>get the square root of 64 = 8</span>

<span>The vertical component of the vector is 8 cm.</span>

3 0
3 years ago
A current-carrying wire 1.50 m long is positioned perpendicular to a uniform magnetic field. If the current is 10 A and there is
LenaWriter [7]

Answer:

0.2

Explanation:

F= BIL sin©

3= B×10×1.5 sin90

B=3/15

B= 0.2

8 0
3 years ago
A projectile is launched with a horizontal velocity of 20 m/s and an initial vertical velocity of 20 m/s. What is the projectile
cestrela7 [59]

Answer:

Vertical acceleration 9.8 m/s² downward

Horizontal acceleration 0.0 m/s²

assuming no air resistance.

6 0
3 years ago
How can you decrease the amount of input force of a wheel and axle?
nasty-shy [4]

Explanation:

hmm by the increasing the size of wheel and decreasing axle

7 0
3 years ago
Other questions:
  • Construct a process by which rocks may change form
    12·1 answer
  • The area of a rectangular loop of wire is 3.6 × 10-3 m2. The loop is placed in a magnetic field that changes from 0.20 T to 1.4
    9·1 answer
  • What is the denisty of a 75 g block of wood measuring 12 cm× 8cm× 9cm​
    9·1 answer
  • Kepler’s first law states that the orbits of planets are ellipses with the Sun at one ____.
    13·2 answers
  • An object falls a distance h from rest. If it travels 0.460h in the last 1.00 s, find (a) the time and (b) the height of its fal
    10·2 answers
  • Tell me what the
    15·1 answer
  • Evaluate x and y in the equation: E=Cm^xV^y , where E is kinetic energy , m is mass , V is velocity and C is a dimension less co
    9·1 answer
  • A gas occupies 0.60 m3 at a 5.0 atm. If the temperature of the gas remains the same and the pressure decreases to 2.5 atm, what
    12·1 answer
  • By how many times will the kinetic energy of a body increases if its speed is trippled? Show by calculation.​
    14·1 answer
  • What happens to the wavelength of a wave if the frequency quadruples, but the wave is in the same medium?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!