Reactants are NaHCO3 and HC2H3O2 because they are on the left side of the arrow, aka they’re what’s going in to make the products. NaC2H3O2, H2O and CO2 are the products bc they’re on the right side of the arrow, aka they are the results of the reactants combining
Answer:
The statement that describes the advantage of a nonrenewable energy source is that ' they are currently found in abundance' Option D.
Explanation:
Nonrenewable energy sources are sources of energy which will not be replenished after their use, their production usually takes millions of years to be accomplished, Like crude oil, the synthesis under the ground was believed to take Millenium from the various geothermic reactions that occur on the buried biomass millions of years ago.
However, since these energy sources are liable to be exhausted quickly due to their unreplenish nature, nature provides them in abundance. They are currently found in large quantity. Take for example, the coal deposit and crude oil wells which had been mined for many years before now. The continuous usage of these nonrenewable sources nevertheless makes them to be susceptible to exhaustion in some years to come.
Water drops come in different sizes.
Let's imagine a drop weighs a quarter of a gram.
The molar mass of water is about 18g/mol, which means that 6.02 x 10^23 water molecules (AKA a mole of water molecules) weigh about 18 grams.
A quarter of a gram is 1/72 of 18, so it contains 1/72 times 6.02 x 10^23 molecules. That equals 8361111111111110000000 molecules.
In scientific notation that is... 8.36 x 10^21 molecules.
Answer:
Explanation:Use the Gizmo to mix 200 g of copper at 100 °C with 1,000 g of water at 20 °C. Record the data and calculated answers for copper in the 2 tables below. Accepted values for % error calculations can be found below these 2 tables.
DATA
Copper
Lead
Mass of Metal
Answer:
- Add AgNO₃ solution to both unlabeled flasks: based on solubility rules, you can predict that when you add AgNO₃ to the NaCl solution, you will obtain AgCl precipitate, while no precipitate will be formed from the NaClO₃ solution.
Explanation:
<u>1. Adding AgNO₃ to NaCl solution:</u>
- AgNO₃ (aq) + NaCl (aq) → AgCl (s) + NaNO₃ (aq)
<u>2. Adding AgNO₃ to NaClO₃ solution</u>
- AgNO₃ (aq) + NaClO₃ (aq) → AgClO₃ (aq) + NaNO₃ (aq)
<u />
<u>3. Relevant solubility rules for the problem.</u>
- Although most salts containing Cl⁻ are soluble, AgCl is a remarkable exception and is insoluble.
- All chlorates are soluble, so AgClO₃ is soluble.
- Salts containing nitrate ion (NO₃⁻) are generally soluble and NaNO₃ is not an exception to this rule. In fact, NaNO₃ is very well known to be soluble.
Hence, when you add AgNO₃ to the NaCl solution the AgCl formed will precipitate, and when you add the same salt (AgNO₃) to the AgClO₃ solution both formed salts AgClO₃ and NaNO₃ are soluble.
Then, the precipiate will permit to conclude which flask contains AgCl.