The new area will be 320 in²
<em><u>Explanation</u></em>
Lin has a drawing with an area of 20 in² and she increases all sides by a scale factor of 4.
<u>The general rule</u> we need to use here.......
"<em>If the lengths of the sides in a shape are all increased by a scale factor of
, then the area will be increased by a scale factor of
"</em>
Here the sides are increased by a scale factor of 4. So, the area will be increased by a scale factor of 
Thus, the new area will be: 
Answer:
where is the question
have a good day :)
Step-by-step explanation:
Answer:
6.667%
Step-by-step explanation:
Given that:
Actual measurement = 7.5 mm
Measured value = 7 mm
Percentage error :
Error / (Actual measurement.) * 100%
(Actual measurement - measured value)
Error = 7.5 - 7 = 0.5 mm
Percentage error = (0.5 / 7.5) * 100%
Percentage error = 0.0666666 * 100%
= 6.667%
To solve this problem, you have to know these two special factorizations:

Knowing these tells us that if we want to rationalize the numerator. we want to use the top equation to our advantage. Let:
![\sqrt[3]{x+h}=x\\ \sqrt[3]{x}=y](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7Bx%2Bh%7D%3Dx%5C%5C%20%5Csqrt%5B3%5D%7Bx%7D%3Dy%20)
That tells us that we have:

So, since we have one part of the special factorization, we need to multiply the top and the bottom by the other part, so:

So, we have:
![\frac{x+h-h}{h(\sqrt[3]{(x+h)^2}+\sqrt[3]{(x+h)(x)}+\sqrt[3]{x^2})}=\\ \frac{x}{\sqrt[3]{(x+h)^2}+\sqrt[3]{(x+h)(x)}+\sqrt[3]{x^2}}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bx%2Bh-h%7D%7Bh%28%5Csqrt%5B3%5D%7B%28x%2Bh%29%5E2%7D%2B%5Csqrt%5B3%5D%7B%28x%2Bh%29%28x%29%7D%2B%5Csqrt%5B3%5D%7Bx%5E2%7D%29%7D%3D%5C%5C%20%5Cfrac%7Bx%7D%7B%5Csqrt%5B3%5D%7B%28x%2Bh%29%5E2%7D%2B%5Csqrt%5B3%5D%7B%28x%2Bh%29%28x%29%7D%2B%5Csqrt%5B3%5D%7Bx%5E2%7D%7D%20)
That is our rational expression with a rationalized numerator.
Also, you could just mutiply by:
![\frac{1}{\sqrt[3]{x_h}-\sqrt[3]{x}} \text{ to get}\\ \frac{1}{h\sqrt[3]{x+h}-h\sqrt[3]{h}}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B%5Csqrt%5B3%5D%7Bx_h%7D-%5Csqrt%5B3%5D%7Bx%7D%7D%20%5Ctext%7B%20to%20get%7D%5C%5C%20%5Cfrac%7B1%7D%7Bh%5Csqrt%5B3%5D%7Bx%2Bh%7D-h%5Csqrt%5B3%5D%7Bh%7D%7D%20)
Either way, our expression is rationalized.
That would be -0.4, my good sir.