<u>Answer:</u> The correct answer is Option 4.
<u>Explanation:</u>
Bromothymol blue, Bromocresol green and Thymol blue are the indicators which change their color according to the change in pH of the solution.
The pH range and color change of these indicators are:
- Bromothymol Blue: The pH range for this indicator is 6.0 to 7.5 and color change is from yellow to blue. It appears yellow below pH 6.0 and blue above pH 7.5
- Bromocresol green: The pH range for this indicator is 3.5 to 6.0 and color change is from yellow to blue. It appears yellow below pH 3.5 and blue above pH 6.0
- Thymol Blue: The pH range for this indicator is 8.0 to 9.6 and color change is from yellow to blue. It appears yellow below pH 8.0 and blue above pH 9.6
As, the highest pH of all the indicators is 9.6, so every indicator will appear blue above pH 9.6.
Hence, the correct answer is Option 4.
Pieces of copper, silver and gold are dropped into a solution of iron sulphate. The piece that will get a coating of copper is. ... Therefore, none of the three metals can displace iron from its salt solution. Hence, we observe that no reaction takes place and none of the pieces get coated.
Answer:
589.038 m/s
Explanation:
i dont know if did this right tho
The uncertainty principle is one of the most famous (and probably misunderstood) ideas in physics. It tells us that there is a fuzziness in nature, a fundamental limit to what we can know about the behaviour of quantum particles and, therefore, the smallest scales of nature. Of these scales, the most we can hope for is to calculate probabilities for where things are and how they will behave. Unlike Isaac Newton's clockwork universe, where everything follows clear-cut laws on how to move and prediction is easy if you know the starting conditions, the uncertainty principle enshrines a level of fuzziness into quantum theory.
This Should help you
Answer:
18 g
Explanation:
We'll begin by converting 500 mL to L. This can be obtained as follow:
1000 mL = 1 L
Therefore,
500 mL = 500 mL × 1 L / 1000 mL
500 mL = 0.5 L
Next, we shall determine the number of mole of the glucose, C₆H₁₂O₆ in the solution. This can be obtained as follow:
Volume = 0.5 L
Molarity = 0.2 M
Mole of C₆H₁₂O₆ =?
Molarity = mole / Volume
0.2 = Mole of C₆H₁₂O₆ / 0.5
Cross multiply
Mole of C₆H₁₂O₆ = 0.2 × 0.5
Mole of C₆H₁₂O₆ = 0.1 mole
Finally, we shall determine the mass of 0.1 mole of C₆H₁₂O₆. This can be obtained as follow:
Mole of C₆H₁₂O₆ = 0.1 mole
Molar mass of C₆H₁₂O₆ = (12×6) + (1×12) + (16×6)
= 72 + 12 + 96
= 180 g/mol
Mass of C₆H₁₂O₆ =?
Mass = mole × molar mass
Mass of C₆H₁₂O₆ = 0.1 × 180
Mass of C₆H₁₂O₆ = 18 g
Thus, 18 g of glucose, C₆H₁₂O₆ is needed to prepare the solution.