1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleks [24]
3 years ago
11

After school, several students skateboard at the nearby park. Your best friend, Erwin, is a good skateboarder and happens to fal

l when attempting a fancy trick. After falling, Erwin gets back up and starts repeating the trick over and over again. How would a cognitive psychologist interpret Erwin getting back up and repeating the trick many times?
Physics
1 answer:
Alchen [17]3 years ago
3 0

Answer:

A person who never gives up.

Explanation:

due to his passion for skateboarding he try's his never gives up until he will finally learns the trick.

You might be interested in
In the Olympic shot-put event, an athlete throws the shot with an initial speed of 12.0m/s at a 40.0? angle from the horizontal.
HACTEHA [7]

A) Horizontal range: 16.34 m

B) Horizontal range: 16.38 m

C) Horizontal range: 16.34 m

D) Horizontal range: 16.07 m

E) The angle that gives the maximum range is 41.9^{\circ}

Explanation:

A)

The motion of the shot is a projectile motion, so we can analyze separately its vertical motion and its horizontal motion.

The vertical motion is a uniformly accelerated motion, so we can use the following suvat equation to find the time of flight:

s=u_y t + \frac{1}{2}at^2 (1)

where

s = -1.80 m is the vertical displacement of the shot to reach the ground (negative = downward)

u_y = u sin \theta is the initial vertical velocity, where

u = 12.0 m/s is the initial speed

\theta=40.0^{\circ} is the angle of projection

So

u_y=(12.0)(sin 40.0^{\circ})=7.7 m/s

a=g=-9.8 m/s^2 is the acceleration due to gravity (downward)

Substituting the numbers, we get

-1.80 = 7.7t -4.9t^2\\4.9t^2-7.7t-1.80=0

which has two solutions:

t = -0.21 s (negative, we ignore it)

t = 1.778 s (this is the time of flight)

The horizontal motion is instead uniform, so the horizontal range is given by

d=u_x t

where

u_x = u cos \theta=(12.0)(cos 40^{\circ})=9.19 m/s is the horizontal velocity

t = 1.778 s is the time of flight

Solving, we find

d=(9.19)(1.778)=16.34 m

B)

In this second case,

\theta=42.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 42.5^{\circ})=8.1 m/s

So the equation for the vertical motion becomes

4.9t^2-8.1t-1.80=0

Solving for t, we find that the time of flight is

t = 1.851 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 42.5^{\circ})=8.85 m/s

So, the range of the shot is

d=u_x t = (8.85)(1.851)=16.38 m

C)

In this third case,

\theta=45^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 45^{\circ})=8.5 m/s

So the equation for the vertical motion becomes

4.9t^2-8.5t-1.80=0

Solving for t, we find that the time of flight is

t = 1.925 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 45^{\circ})=8.49 m/s

So, the range of the shot is

d=u_x t = (8.49)(1.925)=16.34 m

D)

In this 4th case,

\theta=47.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 47.5^{\circ})=8.8 m/s

So the equation for the vertical motion becomes

4.9t^2-8.8t-1.80=0

Solving for t, we find that the time of flight is

t = 1.981 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 47.5^{\circ})=8.11 m/s

So, the range of the shot is

d=u_x t = (8.11)(1.981)=16.07 m

E)

From the previous parts, we see that the maximum range is obtained when the angle of releases is \theta=42.5^{\circ}.

The actual angle of release which corresponds to the maximum range can be obtained as follows:

The equation for the vertical motion can be rewritten as

s-u sin \theta t + \frac{1}{2}gt^2=0

The solutions of this quadratic equation are

t=\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g}

This is the time of flight: so, the horizontal range is

d=u_x t = u cos \theta (\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g})=\\=\frac{u^2}{-2g}(1+\sqrt{1+\frac{2gs}{u^2 sin^2 \theta}})sin 2\theta

It can be found that the maximum of this function is obtained when the angle is

\theta=cos^{-1}(\sqrt{\frac{2gs+u^2}{2gs+2u^2}})

Therefore in this problem, the angle which leads to the maximum range is

\theta=cos^{-1}(\sqrt{\frac{2(-9.8)(-1.80)+(12.0)^2}{2(-9.8)(-1.80)+2(12.0)^2}})=41.9^{\circ}

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

8 0
3 years ago
A flat coil of wire consisting of 15 turns, each with an area of 40 cm 2, is positioned perpendicularly to a uniform magnetic fi
zheka24 [161]

Answer:

0.54 A

Explanation:

Parameters given:

Number of turns, N = 15

Area of coil, A = 40 cm² = 0.004 m²

Change in magnetic field, ΔB = 5.1 - 1.5 = 3.6 T

Time interval, Δt = 2 secs

Resistance of the coil, R = 0.2 ohms

To get the magnitude of the current, we have to first find the magnitude of the EMF induced in the coil:

|V| = |(-N * ΔB * A) /Δt)

|V| = | (-15 * 3.6 * 0.004) / 2 |

|V| = 0.108 V

According to Ohm's law:

|V| = |I| * R

|I| = |V| / R

|I| = 0.108 / 0.2

|I| = 0.54 A

The magnitude of the current in the coil of wire is 0.54 A

6 0
3 years ago
When dogs see police dogs do they think "oh no its the cops"?
ira [324]

No they say "Watch out it's the fuzz"

4 0
2 years ago
Read 2 more answers
Consider a venturi with a small hole drilled in the side of the throat. This hole is connected via a tube to a closed reservoir.
Marina CMI [18]

Answer:

(P_1-P_2)=1913.31 N/m^2

Explanation:

given:

\frac{A_t}{A_1}=0.85

V_1=90 m/s

γ∞=1.23 kg/m^3

solution:

since outside pressure is atm pressure vaccum can be defined by (P_1-P_2)

V_1=√2(P_1-P_2)/γ∞[\frac{A_t}{A_1}^2-1]

(P_1-P_2)=1913.31 N/m^2

6 0
2 years ago
What is know as law of inertia? ​
schepotkina [342]

Answer:

<em><u>mark</u></em><em><u> </u></em><em><u>me</u></em><em><u> </u></em><em><u>brianliest</u></em><em><u> </u></em><em><u>plz</u></em>

Explanation:

  • Law of inertia, also called Newton's first law, postulate in physics that, if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force.
  • Law of Inertia states that a body in a state of rest or uniform motion remains in the same state until and unless an external force acts on it.
  • A body continues to be in its state of rest or in uniform motion along a straight line unless an external force is applied on it. This law is also called law of inertia.
5 0
2 years ago
Other questions:
  • An object is hung from a spring balance attached to the ceiling of an elevator cab. The balance reads 65 N when the cab is stand
    7·1 answer
  • PLZ HELP ME 50 POINTS AND BRAINLEIST Which processes do you suppose are responsible for the formation of hail during a thunderst
    11·1 answer
  • A parachutist bails out and freely falls 50 m. Then the parachute opens, and thereafter she deceler- ates at 2.0 m/s2. She reach
    11·1 answer
  • Preventing projects​
    8·1 answer
  • What is the name of the perceived change in a sound wave’s frequency due to motion between the observer and the sound source?
    15·2 answers
  • Which of the following scenerios fits all of the criteria for the two-source interference equations to be valid?
    5·1 answer
  • what factors go into decisions about changing what materials should be used when building a products​
    7·1 answer
  • If it takes 3.5 hours for the hogwarts express, moving at a speed of 120 mi/hr, to make it from platform 9 and 3/4 to hogwarts,
    15·1 answer
  • An airplane flying at a speed of 130 mi/h (58.1 m/s) and at an altitude of 4.9 km drops a food package. Without a parachute, at
    12·1 answer
  • Arrange the stars based on their temperature. Begin with the coolest star, and end with the hottest star.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!