I can’t answer without any graph options
Answer: A, C, E
Explanation:
Gamma rays, Microwaves, and Radio waves
this can be solve using the formala of free fall
t = sqrt( 2y/ g)
where t is the time of fall
y is the height
g is the acceleration due to gravity
48.4 s = sqrt (2 (1.10e+02 m)/ g)
G = 0.0930 m/s2
The velocity at impact
V = sqrt(2gy)
= sqrt( 2 ( 0.0930 m/s2)( 1.10e+02 m)
V = 4.523 m/s
<span> </span>
Answer:
ax = -3.29[m/s²]
ay = -1.9[m/s²]
Explanation:
We must remember that acceleration is a vector and therefore has magnitude and direction.
In this case, it is accelerating downwards, therefore for a greater understanding we will make a diagram of said vector, this diagram is attached.
![a_{x}=-3.8*cos(30) = -3.29 [m/s^{2}]\\ a_{y}=-3.8*sin(30) = -1.9 [m/s^{2}]](https://tex.z-dn.net/?f=a_%7Bx%7D%3D-3.8%2Acos%2830%29%20%3D%20-3.29%20%5Bm%2Fs%5E%7B2%7D%5D%5C%5C%20a_%7By%7D%3D-3.8%2Asin%2830%29%20%3D%20-1.9%20%5Bm%2Fs%5E%7B2%7D%5D)
<em>Resultant angle; θ = 25.59° </em>
This question is dealing with bearings and distance.
We are told that from point A, the camel walks 20 km at 15° in the south of east direction.
Thus, d_s,e = 20 km
Resolving along the horizontal east direction gives; d_e = 20 cos 15
d_e = 19.32 km
Also, resolving along the vertical south direction gives; d_s = 20 sin 15
d_s = 5.18 km
Net vertical distance; d_vert = 8km - 5.18km = 2.72 km
Net horizontal distance; d_hor = 25km - 19.32 km = 5.68 km
Now, the resultant angle is given by;
tan θ = d_vert/d_hor
tan θ = 2.72/5.68
tan θ = 0.4789
θ = tan^(-1) 0.4789
θ = 25.59°
Read more at; brainly.com/question/22518031