1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Virty [35]
3 years ago
6

A sphere of volume 1.20×10−3m3 hangs from a cable. When the sphere is completely submerged in water, the tension in the cable is

29.4 N. What is the buoyant force on the submerged sphere?
Physics
1 answer:
KATRIN_1 [288]3 years ago
4 0

Answer:

B = 62.9 N

Explanation:

This is an exercise on Archimedes' principle, where the thrust force equals the weight of the  liquid

         B = ρ g V

write the equilibrium equation

         T + B -W = 0

         B = W- T               (1)

use the density to write the weight

         ρ = m / V

        m = ρ V

         W = ρ g V

substitute in  1

         B = m g -T

         B = \rho_{body} g V - T

To finish the calculation, the density of the material must be known, suppose it is steel  \rho_{body} = 7850 kg / m³

calculate

         B = 7850 9.8 1.20 10⁻³ - 29.4

          B = 92.3 - 29.4

          B = 62.9 N

You might be interested in
The equation for the speed of a satellite in a circular orbit around the earth depends on mass. Which mass?
katovenus [111]
<h3><u>Question: </u></h3>

The equation for the speed of a satellite in a circular orbit around the Earth depends on mass. Which mass?

a. The mass of the sun

b. The mass of the satellite

c. The mass of the Earth

<h3><u>Answer:</u></h3>

The equation for the speed of a satellite orbiting in a circular path around the earth depends upon the mass of Earth.

Option c

<h3><u> Explanation: </u></h3>

Any particular body performing circular motion has a centripetal force in picture. In this case of a satellite revolving in a circular orbit around the earth, the necessary centripetal force is provided by the gravitational force between the satellite and earth. Hence F_{G} = F_{C}.

Gravitational force between Earth and Satellite: F_{G} = \frac{G \times M_e \times M_s}{R^2}

Centripetal force of Satellite :F_C = \frac{M_s \times V^2}{R}

Where G = Gravitational Constant

M_e= Mass of Earth

M_s= Mass of satellite

R= Radius of satellite’s circular orbit

V = Speed of satellite

Equating  F_G = F_C, we get  

Speed of Satellite V =\frac{\sqrt{G \times M_e}}{R}

Thus the speed of satellite depends only on the mass of Earth.

6 0
4 years ago
Just need help with 1 and 2 please :D i’m having a bit of trouble :/
dexar [7]
1. Traveling by car means you have specific roads to follow. You won’t be able to go straight to Banning high from POLAHS. The 8.4km will be defined as distance. Traveling by helicopter you don’t have roads to follow that means you can fly directly to banning high. 6.8km will be defined as displacement.

2. A) 400m
B)0m
C)d=1/2(vi+vf)t
400=1/2(0+vf)92
8.7m/s
D) 0m/s
E) Not sure but instantaneous velocity refer to velocity at a given point. Average velocity is just the average. Usually instantaneous velocity won’t be same as the average velocity.
Plz like if it helped.
7 0
3 years ago
The heat capacity of object B is twice that of object A. Initially A is at 300 K and B at 450 K. They are placed in thermal cont
ivann1987 [24]

Answer:

The final temperature of both objects is 400 K

Explanation:

The quantity of heat transferred per unit mass is given by;

Q = cΔT

where;

c is the specific heat capacity

ΔT is the change in temperature

The heat transferred by the  object A per unit mass is given by;

Q(A) = caΔT

where;

ca is the specific heat capacity of object A

The heat transferred by the  object B per unit mass is given by;

Q(B) = cbΔT

where;

cb is the specific heat capacity of object B

The heat lost by object B is equal to heat gained by object A

Q(A) = -Q(B)

But heat capacity of object B is twice that of object A

The final temperature of the two objects is given by

T_2 = \frac{C_aT_a + C_bT_b}{C_a + C_b}

But heat capacity of object B is twice that of object A

T_2 = \frac{C_aT_a + C_bT_b}{C_a + C_b} \\\\T_2 = \frac{C_aT_a + 2C_aT_b}{C_a + 2C_a}\\\\T_2 = \frac{c_a(T_a + 2T_b)}{3C_a} \\\\T_2 = \frac{T_a + 2T_b}{3}\\\\T_2 = \frac{300 + (2*450)}{3}\\\\T_2 = 400 \ K

Therefore, the final temperature of both objects is 400 K.

4 0
3 years ago
Please help me!! Need this done before the 40 min end
Alex_Xolod [135]

Answer:

its c

Explanation:

bc i know

5 0
3 years ago
What was significant about the discovery of gallium
Kryger [21]
It confirmed medeleeve's hypothesis (prediction) and showed the use of his table
8 0
3 years ago
Read 2 more answers
Other questions:
  • 16 to 19 year old male and females are how much more likely to be involved in a crash?
    15·1 answer
  • Find the electric force acting on an alpha particle in a horizontal electric field of 600N/C
    10·1 answer
  • The table represents the speed of a car in a northern direction over several seconds. Column 1 would be on the x-axis, and Colum
    9·1 answer
  • What is the heaviest planet in the worlx​
    13·2 answers
  • Which of the following will not conduct an electrical current?
    6·1 answer
  • Iron cutting scissors have short edges whereas cloth cutting scissors have long edges why​
    9·1 answer
  • A wave on a string is observed to have a frequency of 3 Hertz. Its wavelength is 6 centimeters.
    14·1 answer
  • Michael is looking for examples of energy at the park. He notices a mother pushing her child on a swing. He graphs the number of
    11·1 answer
  • Sugar crystals enter a dryer at the rate of 1000 kg h-1 and at 20% w.b. moisture content. They leave the dryer at 3% w.b. moistu
    11·1 answer
  • A 5 kg object moving to the right at 4 m/s collides inelastically with a 5 kg object
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!