Answer is: this sample of sand is heterogeneous mixture.
Heterogeneous mixture is not uniform in composition (in this mixture different metals and minerals), but proportions of its components (in this mixture particles of different colors, small pebbles) vary throughout the sample.
Answer:
P(N) = 38.48 mmHg
Explanation:
Given data:
Partial pressure of He = 15.22 mmHg
Partial pressure of O = 35.21 mmHg
Partial pressure of N = ?
Total pressure = 88.91 mmHg
Solution:
According to Dalton law of partial pressure,
The total pressure inside container is equal to the sum of partial pressures of individual gases present in container.
Mathematical expression:
P(total) = P₁ + P₂ + P₃+ ............+Pₙ
Now we will solve this problem by using this law.
P(total) = P(He) + P(O) + P(N)
88.91 mmHg = 15.22 mmHg + 35.21 mmHg + P(N)
88.91 mmHg = 50.43 mmHg + P(N)
P(N) = 88.91 mmHg - 50.43 mmHg
P(N) = 38.48 mmHg
a. 2Na Al 03
Equation must have the same number of each element on both sides of the equation.
Answer:
4 - 1 - 3 - 2 - 6 - 5
Explanation:
During an engineering process, first, we need to identify the problem, or the need because the process only will occur because of some need. Then, it's necessary to know as much as possible about the problem and the things that already exist or already were tested to solve it. Knowing the background will make the work easy.
After that, it's necessary to plan the things we'll do, knowing the costs, the time needed for activities, how many people will be necessary for each step, etc. It's really important to make a plan. Then, do the work, following the plan. Thus, the process must be tested. During the test of the results, some problems must be found, so it's time to evaluate and redesign the process, to solve these problems found.
Celsius scale is related to kelvin scale by the following equation,
⁰C = K-273
°C = K-273
So as here temperature is given in kelvin, so it can be converted into celsius as follows:
So 20 K = 20K-273 °C
= -253 °C .
So, the 20 K temperature equals to -253 °C.
So , -253 °C is equals to 20 K or 20 K temperature equals to -253 °C.