Answer:
4. homogeneous; distillation
Explanation:
Gasoline and motor oil are chemically similar. They are both mixtures of non polar hydrocarbons containing carbon and hydrogen atoms. However, motor oil is much more viscous Motor Oil. Hence we can say that the mixture of gasoline and motor oil are homogeneous and they can be separated by distillation.
Answer:
The solution would need 13.9 g of KCl
Explanation:
0.75 m, means molal concentration
0.75 moles in 1 kg of solvent.
Let's think as an aqueous solution.
250 mL = 250 g, cause water density (1g/mL)
1000 g have 0.75 moles of solute
250 g will have (0.75 . 250)/1000 = 0.1875 moles of KCl
Let's convert that moles in mass (mol . molar mass)
0.1875 m . 74.55 g/m = 13.9 g
The compounds that are produced upon this combustion reaction would be Carbon Dioxide and water.
CO2 = Carbon and Oxygen
H2O = Hydrogen and Oxygen.
The exact molecular amounts or moles can be determined by balancing this combustion reaction.
Answer:
x = 4.17
y = 1.86
Explanation:
0.62 = log(x)
x = 10^0.62 = 4.17 ( to the nearest hundredth)
0.62 = ln(y)
y = e^0.62 = 1.86 (to the nearest hundredth)
The molarity of aqueous lithium bromide, LiBr solution is 0.2 M
We'll begin by calculating the number of mole of Pb(NO₃)₂ in the solution.
- Volume = 10 mL = 10 / 1000 = 0.01 L
- Molarity of Pb(NO₃)₂ = 0.250 M
- Mole of Pb(NO₃)₂ =?
Mole = Molarity x Volume
Mole of Pb(NO₃)₂ = 0.25 × 0.01
Mole of Pb(NO₃)₂ = 0.0025 mole
Next, we shall determine the mole of LiBr required to react with 0.0025 mole of Pb(NO₃)₂
Pb(NO₃)₂ + 2LiBr —> PbBr₂ + 2LiNO₃
From the balanced equation above,
1 mole of Pb(NO₃)₂ reacted with 2 mole of LiBr.
Therefore,
0.0025 mole of Pb(NO₃)₂ will react with = 2 × 0.0025 = 0.005 mole of LiBr
Finally, we shall determine the molarity of the LiBr solution
- Mole = 0.005 mole
- Volume = 25 mL = 25 / 1000 = 0.025 L
- Molarity of LiBr =?
Molarity = mole / Volume
Molarity of LiBr = 0.005 / 0.025
Molarity of LiBr = 0.2 M
Learn more about molarity: brainly.com/question/10103895