Answer:
Iron is the element that is produced at the limit of the reaction.
Explanation:
In nuclear fusion 2 lighter nuclei are combined together into a single nucleus releasing a tremendous amount of energy in the process.
Up to fusion of iron the reaction of fusion is exothermic but when iron atom pops out the reaction becomes endothermic and it requires very high amount of energy to fuse iron atoms which is not available thus marking an end to the fusion reaction.
volume of Ni = 25 nL = 25 x 10⁻⁹ L
mol Ni = 25 x 10⁻⁹ L x 1.25 mol/L = 3.125 x 10⁻⁸
mass = mol x Ar Ni
mass = 3.125 x 10⁻⁸ x 59 g/mol
mass = 1.84 x 10⁻⁶ g = 1.84 μg
Answer: True
The formula of weight is w = mg, where m is the mass and g is the acceleration of gravity. If you want to calculate an object's weight, you need to know the two components: mass and gravity.
You only need to know the mass of the object because the acceleration of gravity is ALWAYS (assuming the object is on Earth) 9.8 m/s^2.
Since you know the ratio of atoms, you can start to put a formula togeter. The formula might look like:<span>
X<span>H2.67
</span></span>but since atoms can't come in fractional amounts, we have to multiply the formula by some number in order to turn 2.67 into a whole #, while still maintaining the ratio. Multiplying 2.67 by 3 yields 8, so the most likely ratio in the molecule is
X3H8<span>so the ratio of 1:2.67 is still maintained. The mass percent tells you that out of every 100g of compound, 91.26g is element X, so the other 8.74g must be H. Dividing each mass by the number of moles in the formula gets us the molar mass of each element (approximately). DIviding 8.74g by 8 gets 1.09, roughly the molar mass of hydrogen. Dividing 91.26g by 3 gets us 30.4, roughly the molar mass of phosphorus. Element X is most likely phosphorus</span>