Answer:
Option 10. 169.118 J/KgºC
Explanation:
From the question given above, the following data were obtained:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1.61 KJ
Mass of metal bar = 476 g
Specific heat capacity (C) of metal bar =?
Next, we shall convert 1.61 KJ to joule (J). This can be obtained as follow:
1 kJ = 1000 J
Therefore,
1.61 KJ = 1.61 KJ × 1000 J / 1 kJ
1.61 KJ = 1610 J
Next, we shall convert 476 g to Kg. This can be obtained as follow:
1000 g = 1 Kg
Therefore,
476 g = 476 g × 1 Kg / 1000 g
476 g = 0.476 Kg
Finally, we shall determine the specific heat capacity of the metal bar. This can be obtained as follow:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1610 J
Mass of metal bar = 0.476 Kg
Specific heat capacity (C) of metal bar =?
Q = MCΔT
1610 = 0.476 × C × 20
1610 = 9.52 × C
Divide both side by 9.52
C = 1610 / 9.52
C = 169.118 J/KgºC
Thus, the specific heat capacity of the metal bar is 169.118 J/KgºC
Answer:
1.67 A
Explanation:
Given that,
→ Power (P) = 400 W
→ Potential difference (V) = 240 V
→ Current (I) = ?
The amount of current drawn will be,
→ P = V × I
→ I = P/V
→ I = 400/240
→ I = 1.66666666667
→ [ I = 1.67 A ]
Hence, the current drawn 1.67 A.
Answer:
Hans Christian Oersted began a new scientific epoch when he discovered that electricity and magnetism are linked. He showed by experiment that an electric current flowing through a wire could move a nearby magnet. The discovery of electromagnetism set the stage for the eventual development of our modern technology-based world.
Explanation:
Flame of fire could get put out with water