Answer:
The capillary rise of the glycerin is most nearly 
Explanation:
From the question we are told that
The diameter of the glass tube is 
The density of glycerin is 
The surface tension of the glycerin is 
The capillary rise of the glycerin is mathematically represented as

substituting value


Therefore the height of the glass tube the glycerin was able to cover is
<span>1/3
The key thing to remember about an elastic collision is that it preserves both momentum and kinetic energy. For this problem I will assume the more massive particle has a mass of 1 and that the initial velocities are 1 and -1. The ratio of the masses will be represented by the less massive particle and will have the value "r"
The equation for kinetic energy is
E = 1/2MV^2.
So the energy for the system prior to collision is
0.5r(-1)^2 + 0.5(1)^2 = 0.5r + 0.5
The energy after the collision is
0.5rv^2
Setting the two equations equal to each other
0.5r + 0.5 = 0.5rv^2
r + 1 = rv^2
(r + 1)/r = v^2
sqrt((r + 1)/r) = v
The momentum prior to collision is
-1r + 1
Momentum after collision is
rv
Setting the equations equal to each other
rv = -1r + 1
rv +1r = 1
r(v+1) = 1
Now we have 2 equations with 2 unknowns.
sqrt((r + 1)/r) = v
r(v+1) = 1
Substitute the value v in the 2nd equation with sqrt((r+1)/r) and solve for r.
r(sqrt((r + 1)/r)+1) = 1
r*sqrt((r + 1)/r) + r = 1
r*sqrt(1+1/r) + r = 1
r*sqrt(1+1/r) = 1 - r
r^2*(1+1/r) = 1 - 2r + r^2
r^2 + r = 1 - 2r + r^2
r = 1 - 2r
3r = 1
r = 1/3
So the less massive particle is 1/3 the mass of the more massive particle.</span>
R = U : I. U is in Voltage and I is in Ampère. That gives you R = 36 : 8 = 4,5 Ohm
Based on the calculations, the average velocity is equal to 360 m/s and the percent difference is equal to 4.72%.
<h3>What is average velocity?</h3>
An average velocity can be defined as the total distance covered by a physical object divided by the total time taken.
<h3>What is an
average?</h3>
An average is also referred to as mean and it can be defined as a ratio of the sum of the total number in a data set to the frequency of the data set.
<h3>How to calculate the
average velocity?</h3>
Mathematically, the average velocity for this data set would be calculated by using this formula:
Average = [F(v)]/n
Vavg = [v₁ + v₂ + v₃ + v₄ + v₅)/5
Since the values of the average velocity from the table are missing, we would assume the following values for the purpose of an explanation:
Substituting the parameters into the formula, we have:
Vavg = [300 + 450 + 500 + 250 + 300)/5
Vavg = 1800/5
Vavg = 360 m/s.
Next, we would calculate the percent difference by using this formula:
![Percent \;difference = \frac{[V_{avg}\;-\;V_{sound}]}{V_{sound}} \times 100](https://tex.z-dn.net/?f=Percent%20%5C%3Bdifference%20%3D%20%5Cfrac%7B%5BV_%7Bavg%7D%5C%3B-%5C%3BV_%7Bsound%7D%5D%7D%7BV_%7Bsound%7D%7D%20%5Ctimes%20100)
Percent difference = [360 - 343]/360 × 100
Percent difference = 17/360 × 100
Percent difference = 0.0472 × 100
Percent difference = 4.72%.
Read more on average here: brainly.com/question/9550536
#SPJ1
Forces on a Baseball. When a baseballis thrown or hit, the resulting motion of the ball is determined by Newton's laws of motion. ... Lift and drag are actually two components of a single aerodynamic force acting on the ball. Drag acts in a direction opposite to the motion, and lift acts perpendicular to the motion.