We have,
- The mass of sally's mug is 1 kg
- The pressure appliedby the mug is 1100 pascal.
We know that,
As, we already have the value of pressure, let's calculate that of force now;
- F = ma
- F = 1 × 9.8 { Acceleration due to gravity, let's round off it to 10}
- F = 10 N
Just put all the values in the formula now;
- P = F/A
- 1100 = 10 / A
- 1100/10 = A
- 110 m² = A
As, it is already mention that we need to find the radius of the mug, it is obviously a circular base.
We know that,
- Surface area = Circumference
So, let's solve it;
- Circumference = 2πr
- 110 = 2 × 22/7 × r
- 110 × 7/2 × 22 = r
- 5 × 7 = r
- 35 cm = r
<u>T</u><u>h</u><u>u</u><u>s</u><u>,</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>r</u><u>a</u><u>d</u><u>i</u><u>u</u><u>s</u><u> </u><u>o</u><u>f</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>c</u><u>i</u><u>r</u><u>c</u><u>l</u><u>e</u><u> </u><u>i</u><u>s</u><u> </u><u>3</u><u>5</u><u> </u><u>c</u><u>m</u><u>.</u>
Continental drifts i'm pretty sure
The first who discovered The Einstein Roses bridge it was discovered by Ludwig flamm in 1916 a few months after Schwarzschild published his solution and was rediscovered by Albert Einstein and his colleague Nathan Rosen which was published then in 1935
Answer:
a) The angle of refraction is approximately 34.7
b) The angle the light have to be incident to give an angle of refraction of 90° is approximately 53.42°
Explanation:
According to Snell's law, we have;

The refractive index of the glass, n₁ = 1.66
The angle of incident of the light as it moves into water, θ₁ = 27.2°
a) The refractive index of water, n₂ = 1.333
Let θ₂ represent the angle of refraction of the light in water
By plugging in the values of the variables in Snell's Law equation gives;


θ₂ = arcsin(0.5692292265) ≈ 34.7°
The angle of refraction of the light in water, θ₂ ≈ 34.7°
b) When the angle of refraction, θ₂ = 90°, we have;


θ₁ ≈ arcsin(0.803) ≈ 53.42°
The angle of incident, θ₁, that would give an angle of refraction of 90° is θ₁ ≈ 53.42°
The magnitude of the second charge given that the first is –6×10¯⁶ C and is located 0.05 m away is +3.0×10¯⁶ C
<h3>Coulomb's law equation </h3>
F = Kq₁q₂ / r²
Where
- F is the force of attraction
- K is the electrical constant
- q₁ and q₂ are two point charges
- r is the distance apart
<h3>How to determine the second charge </h3>
- Charge 1 (q₁) = –6×10¯⁶ C
- Electric constant (K) = 9×10⁹ Nm²/C²
- Distance apart (r) = 0.05 m
- Force (F) = 65 N
F = Kq₁q₂ / r²
Cross multiply
Fr² = Kq₁q₂
Divide both side by Kq₁
q₂ = Fr² / Kq₁
q₂ = (65 × 0.05²) / (9×10⁹ × 6×10¯⁶)
q₂ = +3.0×10¯⁶ C (since the force is attractive)
Learn more about Coulomb's law:
brainly.com/question/506926