Yes because something that has been electrically charged can make other things move without touching them ( this is called force without contact)
Hoped this helped :)
Answer:
60 N
Explanation:
because when we double the 30N, we will get 60N as a force
Given that,
Mass of trackler, m₁ = 100 kg
Speed of trackler, u₁ = 2.6 m/s
Mass of halfback, m₂ = 92 kg
Speed of halfback, u₂ = -5 m/s (direction is opposite)
To find,
Mutual speed immediately after the collision.
Solution,
The momentum of the system remains conserved in this case. Let v is the mutual speed after the collision. Using conservation of momentum as :

So, the mutual speed immediately after the collision is 1.04 m/s but in opposite direction.
Answer:
The energies corresponding to each of the allowed orbitals are called energy levels.
Explanation:
A scientist known as Niels Bohr put forward that electrons in an atom covers some permitted orbitals with a specific energy. In other words, the energy of an electron in an atom is not continuous, but 'quantized.' The energies corresponding to each of the allowed orbitals are called energy levels.

The Kelvin scale has no negatives on it.
Zero Kelvin is 'Absolute Zero', and nothing can get colder than that.