1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Artist 52 [7]
3 years ago
13

The elastic portion of the downward-sloping straight-line demand curve lies:_______

Physics
1 answer:
zepelin [54]3 years ago
7 0

Answer:

c. above the point of unit elasticity.

Explanation:

The elastic portion of the downward-sloping straight-line demand curve lies above the point of unit elasticity. Supply and demand are fundamental concept in economics. The demand curve shows how much of a good people will want at a different prices. The demands curves illustrates the intuition why people purchase a good for a lower price. For the demand curve, the price is always shown on the vertical axis and the demand curve is shown on the horizontal axis. Thus , the quantity demanded increases as the price gets lower. However, the price elasticity of the demand curve varies along the demand curve. This is because there is a key distinction between the gradient and the elasticity. The gradient which is the slope of the line is always the same in the demand curve but elasticity of the demand changes in the percentage of the quantity demand. Therefore, elasticity will vary along the downward-sloping straight - line demand curve. So,  in a downward-sloping straight-line demand curve, the elastic portion is usually above the  point of unit elasticity

You might be interested in
A resistor, capacitor, and switch are all connected in series to an ideal battery of constant terminal voltage. Initially, the s
erma4kov [3.2K]

Answer:

The voltage across the resistor is zero, and the voltage across the capacitor is equal to the terminal voltage of the battery.

Explanation:

This is because when a capacitor is charged no current or voltage flows through it so it will have a voltage equal to the terminal voltage of the battery

6 0
3 years ago
A tank contains gas at 13.0°C pressurized to 10.0 atm. The temperature of the gas is increased to 95.0°C, and half the gas is re
fomenos

Answer:

The pressure of the remaining gas in the tank is 6.4 atm.

Explanation:

Given that,

Temperature T = 13+273=286 K

Pressure = 10.0 atm

We need to calculate the pressure of the remaining gas

Using equation of ideal gas

PV=nRT

For a gas

P_{1}V_{1}=nRT_{1}

Where, P = pressure

V = volume

T = temperature

Put the value in the equation

10\times V=nR\times286....(I)

When the temperature of the gas is increased

Then,

P_{2}V_{2}=\dfrac{n}{2}RT_{2}....(II)

Divided equation (I) by equation (II)

\dfrac{P_{1}V}{P_{2}V}=\dfrac{nRT_{1}}{\dfrac{n}{2}RT_{2}}

\dfrac{10\times V}{P_{2}V}=\dfrac{nR\times286}{\dfrac{n}{2}R368}

P_{2}=\dfrac{10\times368}{2\times286}

P_{2}= 6.433\ atm

P_{2}=6.4\ atm

Hence, The pressure of the remaining gas in the tank is 6.4 atm.

4 0
2 years ago
The amplitude of a simple harmonic oscillator will be doubled by:a) doubling only the initial speedb) doubling the initial displ
OLEGan [10]

Answer:

When both initial speed and initial displacement is doubled then amplitude will be doubled.

Explanation:

Given that :- Amplitude of simple harmonic Oscillator  is doubled.

So,

     Formula of Simple harmonic oscillator is  X=A\sin\ (2\pi ft +\phi)  ...........(1)

                                                            Where X = Position in (m,cm,km.....)

                                                                        A = Amplitude  in (m,cm,km.....)

                                                                        F = Frequency in (Hz)

                                                                        T = Time in (sec.)

                                                                        Ф = Phase in (rad)

  For initial displacement taking t=0 we get,

                          Initial displacement = A\sin(\phi)    .................(2)            

Now taking equation (1) and differentiating it w.r.t to (t) we get

                                \frac{dx}{dt} = 2\pi fA\cos\ (2\pi ft+\phi)

                                 V= 2\pi fA\cos\ (2\pi ft+\phi)

taking t=0 for initial speed then we get,

                                Initial speed = 2\pi fA\cos\phi    ...............(3)

observing equation (2) & (3) that the initial displacement and initial speed depends on the Amplitude of the Oscillator.

Hence,

when both initial speed and displacement is doubled then amplitude will be doubled.

4 0
3 years ago
Which describes Michael Faraday’s work with electricity and magnetism?
Viefleur [7K]
Genius right dear friend

8 0
3 years ago
PLZZZ HELPPP ASAP<br> I really need help as soon as possible
julsineya [31]

Answer:

Friction

Explanation:

As the toy cars rolls away, more friction is created. The more friction there is, the more friction on surface rubs against another which creates friction which in-term slows it down. Hope this helps.

4 0
2 years ago
Other questions:
  • The four principle surveying methods to spatially determine the position of features are: Select one: ut of a. triangulation, tr
    15·1 answer
  • What is conflict resolution?
    11·1 answer
  • Tectonic plates are large segments of the Earth's crust that move slowly. Suppose that one such plate has an average speed of 4.
    14·1 answer
  • Help plz im lost
    7·1 answer
  • Amy swims 500 m (0.5 km) in 6 minutes (0.1 hour ) . What was her speed in kilometers per hour ?
    10·1 answer
  • A finite line of charge with linear charge density ????=3.35×10^−6 C/m and length L=0.588 m is located along the x ‑axis (from x
    14·1 answer
  • What energy transformation occurs during the combustion of coal in a power plant?
    7·2 answers
  • You are riding n a bus moving slowly through heavy traffic at 2.0 m/s. You hurry to the front of the bus at 4.0 m/s relative to
    6·1 answer
  • The distance from the Moon to Earth is 3.9 x 10^8 meters. What is the time required for a light ray to travel from the Moon to E
    10·1 answer
  • Which statement is true about the reaction shown by this chemical equation?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!