Answer:
Visible light
Explanation:
Electromagnetic spectrum is the classification of the electromagnetic waves according to their frequency/wavelength. In order from the shortest to the longest wavelength, we have
Gamma rays
X-rays
Ultraviolet
Visible light
Infrared
Microwaves
Radio waves
All these waves are invisible to human eye, except for the part referred as 'visible light'. The electromagnetic waves of this part of the spectrum are visible to human eye, and they appear as a different color depending on their wavelength. In particular, we have:
Violet: 380-450 nm
Blue: 450-495 nm
Green: 495-570 nm
Yellow: 570-590 nm
Orange: 590-620 nm
Red: 620-750 nm
Answer:
FORCE - rate of change of momentum, ie its changing velocity [change in velocity is of more concern] NEWTON
WORK - product of force and displacement, ie [velocity may be constant or variable but change in position with certain force is of more concern] JOULES
I hope you understood from this..
Based on Hooke's law, the spring constant of the the body's muscle mechanism is the ratio of force to extension, the effective mass is m/3 and the potential energy that can be stored is ke^2 / 2.
<h3>What is the spring constant?</h3>
The spring constant or stiffness constant of an elastic spring is constant which describes the extent a bit forceapplied to an elastic spring will extend it.
- Spring constant, K = force/extension
Assuming, a body's muscle mechanism is a spring obeying Hooke's law, the effective mass of the spring with mass m is 1/3 of the mass of the spring = m/3
The potential energy that can be stored = ke^2 / 2
where K is spring constant and e is the extension produced.
Therefore, the spring constant of the the body's muscle mechanism is the ratio of force to extension, the effective mass is m/3 and the potential energy that can be stored is ke^2 / 2.
Learn more about Hooke's law at: brainly.com/question/12253978
Answer:
Explanation:
velocity of light in a medium of refractive index V = V₀ / μ
V₀ is velocity of light in air and μ is refractive index of light.
time to travel in tube with air = length of tube / velocity of light
8.72 ns = L / V₀ L is length of tube .
time to travel in tube with jelly = length of tube / velocity of light
8.72+ 1.82 = L / V L is length of tube .
10.54 ns = L / V
dividing the equations
10.54 / 8.72 = V₀ / V
10.54 / 8.72 = μ
1.21 = μ
refractive index of jelly = 1.21 .
I think the answer is "<span>The ball that went out of the park shows more work because the distance was greater."</span>