Answer:
a = 1600 m / s²
Explanation:
For this exercise we use the kinematics relations,
v² = v₀² + 2 a x
where v₀ is the initial velocity of the bullet, which as part of rest is zero, for the distance (x) we can assume that the gases accelerate along the entire trajectory of the cannon x = 2m
a = 
let's calculate
a =
a = 1600 m / s²
The final velocity becomes 31.48 m/s
<u>Explanation:</u>
Given:
Initial velocity, u = 33 m/s
Height, h = 5m
Final velocity, v = ?
According to Newton's law:
v² - u² = 2gh
where,
g is the acceleration due to gravity and
g = 9.8 m/s²
On substituting the values we get:

Therefore, the final velocity becomes 31.48 m/s
Answer:
As of right now the techology has not been invented to time travel
if we were to time travel to the future from where that person travled from would be the past and to them the people from where they came from are living in the past
Explanation:
Answer:
Explanation:
Given
Object is thrown with a velocity of 
Acceleration due to gravity is -g (i.e. acting downward)
Vertical distance traveled by object is given by
where v=final velocity
u=initial velocity
a=acceleration
s=displacement
at maximum height final velocity is zero


time taken to reach maximum height
using
v=u+at
0=9-gt

Answer:
128.9 N
Explanation:
The force exerted on the golf ball is equal to the rate of change of momentum of the ball, so we can write:

where
F is the force
is the change in momentum
is the time interval
The change in momentum can be written as

where
m = 0.04593 kg is the mass of the ball
u = 0 is the initial velocity of the ball
is the final velocity of the ball
Substituting into the original equation, we find the force exerted on the golf ball:
