Answer:
The speed of electron is 
Explanation:
Given that,
Separation of the plate = 1.20 cm
Suppose the field is
.
If the electron is accelerated from rest near the negative plate and passes through a tiny hole in the positive plate.
What the speed does it leave the hole?
We need to calculate the acceleration
Using formula of electric force



We need to calculate the speed of electron
Using equation of motion


Put the value of acceleration in the formula

Put the value into the formula



Hence, The speed of electron is 
Answer:
The number of turns in the second coil is more than the coil 1.
Explanation:
The magnetic field lines are the imaginary path on which an isolated north pole moves if it is free to do so.
The tangent at any point to the magnetic field line, gives the direction of magnetic field at that point.
More be the crowd ness of magnetic field lines more is the strength of magnetic field.
Here the crowd ness of magnetic field lines is more in figure 2 , so the magnetic filed in figure 2 is more than 1. It shows that the number of turns in the second coil is more than the 1 and also the current in the coil 2 is more than 1 .
Answer:
Consider the followig calculation
Explanation:
a) use deal equation:
PV = nRT
ρ = m/V,= ==> V = m/ρ
therefore,
ρ = Pm/RT
convert 95 oF in degree
95 oF = 308.15 K
1 atm = 1.013 * 105 pascal
ρ = 1.013*105 * 29 * /8.314 * 308.15
= 1.146 kg/m3
b) again use ideal gas equation:
ρ = Pm/RT
T = 50 oF = 283.15 K
1 atm = 1.013 * 105 pascal
molar mass will be same
ρ = 1.013 * 105 * 29 / 8.314 * 283.15
ρ = 1.248 kg / m3
So,
c) . more than density of the hot, dry air computed in part (a)
The answer would be D because is the strongest form of radiation
Answer: 1. h
Explanation:
The block would reach exactly the same height from the ground. It would travel a greater distance away from the source, but the height away from the earth would remain the same as you are giving it the same energy each time. Therefore, it will reach the same gravitation potential energy.
Another approach to look at it this is seeing it when the Block moves up the slope, its kinetic energy decreases and the potential energy increases. In both cases, the kinetic energy decreases by same amount, therefore the block rises to same height H.
Try to use the formula;
1/2MV2 = mgh
Where V = √(2gh)
I hope this helps