1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MakcuM [25]
3 years ago
6

Monochromatic light falls on two very narrow slits 0.046 mm apart. Successive fringes on a screen 6.20 m away are 8.9 cm apart n

ear the center of the pattern. Part A Determine the wavelength of the light.
Physics
1 answer:
Elanso [62]3 years ago
8 0

Answer:

λ = 6.602 x 10^(-7) m

Explanation:

In a double-slit interference experiment, the distance y of the maximum of order m from the center of the observed interference pattern on the screen is given as ;

y = mλD/d

Where;

D is the distance of the screen from the slits = 6.2 m

d is the distance between the two slits = 0.046 mm = 0.046 x 10^(-3) m

The fringes on the screen are 8.9 cm = 0.089 m apart from each other, this means that the first maximum (m=1) is located at y = 0.089 m from the center of the pattern.

Therefore, from the previous formula we can find the wavelength of the light:

y = mλD/d

So, λ = dy/mD

Thus,

λ = (0.046 x 10^(-3) x 0.089)/(1 x 6.2)

λ = 6.602 x 10^(-7) m

You might be interested in
The relationship between mass and inertia is described by newton's second law of motion. true or false
Mariana [72]
False. Inertia and mass is not described in Newton’s second law of motion but in Newton’s first law of motion. Newton’s first law of motion or sometimes referred to as the law of inertia. In Newton’s first law indicates that an object at rest will remain at rest unless acted by an unbalanced force. An object in motion continues in motion with the same speed and in the same direction unless acted upon by an unbalanced force.
4 0
3 years ago
The magnet has an unchanging magnetic field: very strong near the magnet, and weak far from the magnet. How did the magnetic fie
STatiana [176]

Answer:

<em>The magnetic field through the coil at first increases steadily up to its maximum value, and then decreases gradually to its minimum value.</em>

<em></em>

Explanation:

At first, the magnet fall towards the coils;  inducing a gradually increasing magnetic field through the coil as it falls into the coil. At the instance when half the magnet coincides with the coil, the magnetic field magnitude on the coil is at its maximum value. When the magnet falls pass the coil towards the floor, the magnetic field then starts to decrease gradually from a strong magnitude to a weak magnitude.

This action creates a changing magnetic flux around the coil. The result is that an induced current is induced in the coil, and the induced current in the coil will flow in such a way as to oppose the action of the falling magnet. This is based on lenz law that states that the induced current acts in such a way as to oppose the motion or the action that produces it.

3 0
3 years ago
Calculate the rate of heat conduction through a layer of still air that is 1 mm thick, with an area of 1 m, for a temperature of
max2010maxim [7]

Answer:

The rate of heat conduction through the layer of still air is 517.4 W

Explanation:

Given:

Thickness of the still air layer (L) = 1 mm

Area of the still air = 1 m

Temperature of the still air ( T) = 20°C

Thermal conductivity of still air (K) at 20°C = 25.87mW/mK

Rate of heat conduction (Q) = ?

To determine the rate of heat conduction through the still air, we apply the formula below.

Q =\frac{KA(\delta T)}{L}

Q =\frac{25.87*1*20}{1}

Q = 517.4 W

Therefore, the rate of heat conduction through the layer of still air is 517.4 W

6 0
3 years ago
Read 2 more answers
If it takes 50m to stop a car initially moving at 25mps, what distance is required to stop a car moving 50mps?
Anastaziya [24]
100m... Hope this helps :)

5 0
3 years ago
Read 2 more answers
What the kinetic energy quantities in calculation pls help me​
Rashid [163]

Answer:

KE = 0.5 * m * v², where: m - mass, v - velocity.

Explanation:

In classical mechanics, kinetic energy (KE) is equal to half of an object's mass (1/2*m) multiplied by the velocity squared. For example, if a an object with a mass of 10 kg (m = 10 kg) is moving at a velocity of 5 meters per second (v = 5 m/s), the kinetic energy is equal to 125 Joules, or (1/2 * 10 kg) * 5 m/s 2.

3 0
2 years ago
Other questions:
  • An 80-kg astronaut becomes separated from his spaceship. He is 15.0 m away from it and at rest relative to it. In an effort to g
    6·1 answer
  • Now assume that the water is contained in a 0.1-kg aluminum pot (cAl = 900 J/kg-K) that is initially at 293 K just like the wate
    11·1 answer
  • A pistol fires a bullet horizontally at 380m/s. The gun is 50.0 meters away from the target. How far below the bullseye will the
    6·1 answer
  • Building a new highway destroys habitats and can lead to soil erosion
    12·2 answers
  • Derive the unit of intensity???
    7·2 answers
  • A crate is dragged 4.0 m along a rough floor with a constant velocity by a worker applying a force of 400 N to a rope at an angl
    7·1 answer
  • Biologists have studied the running ability of the northern quoll, a marsupial indigenous to Australia. In one set of experiment
    13·1 answer
  • How temperature, surface tension and the diameter of the tube affect capillary action.​
    12·1 answer
  • Helpp!!! Will mark brainlst
    5·1 answer
  • Our best evidence and theoretical calculations indicate that the solar system began with a giant spinning system of gas and dust
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!