Answer:
sometimes harmful and sometimes beneficial
Answer:
The average power the woman exerts is 0.5 kW
Explanation:
We note that power, P = The rate at which work is done = Work/Time
Work = Energy
The total work done is the potential energy gained which is the energy due to vertical displacement
Given that the vertical displacement = 5.0 m, we have
Total work done = Potential energy gained = Mass, m × Acceleration due to gravity, g × Vertical height, h
m = 51 kg
g = Constant = 9.81 m/s²
h = 5.0 m
Also, time, t = 5.0 s
Total work done = 51 kg × 9.81 m/s²× 5 m = 2501.55 kg·m²/s² = 2501.55 J
P = 2501.55 J/(5 s) = 500.31 J/s = 500.31 W ≈ 500 W = 0.5 kW.
Answer:

Explanation:
First, we are going to calculate the electrical potential in the point middle between the two charges
Remember that the electrical potential can be calculated as:

Where 
and it is satisfy the superposition principle, thus


The electrical potential at 10 cm from charge 1 is:


Since the work - energy theorem, we have:

where q is the electron's charge and m is the electron's mass
Therefore:


Through is the answer to your question
The molecules which evaporate presumably take heat away from the liquid. So, I'd disagree with the classmate. Whether the amount of cooling would differ from the usual case wherein the molecules have different speeds is another question.
I guess the argument goes something along the lines of that the faster moving and therefore most kinetically energetic molecues evaporate and take away most heat. But if there's no faster moving molecules, 'cos they all have the same speed well, then presumably they'd all take away the same amount of heat. So, maybe the cooling would be less. No cooling though ??? Hmmmm dunno .... i think not ....