The second option is the correct one. m/s^2
Answer:
568.18 N
Explanation:
From the question,
The formula for gravitational potential is given as
Ep = mgh........................ Equation 1
Where Ep = Gravitational potential, m = mass of the diver,h = Height.
But,
W = mg.................... Equation 2
Where W = weight of the diver.
Substitute equation 2 into equation 1
Ep = Wh
Make W the subject of the equation
W = Ep/h................... Equation 3
Given: Ep = 25000 J, h = 44 m
Substitute into equation 3
W = 25000/44
W = 568.18 N.
Hence the weight of the diver = 568.18 N
M = mass of the whale = 1000 kg
m = mass of the seal = 200 kg
V = initial velocity of whale before collision with the seal = 6.0 m/s
v = initial velocity of the seal before collision with the whale = 0 m/s
V' = final velocity of two sea creatures after collision = ?
Using conservation of momentum
M V + m v = (M + m) V'
inserting the above values in the equation
(1000 kg) (6.0 m/s) + (200 kg) (0 m/s ) = (1000 kg + 200 kg) V'
6000 kgm/s + 0 kgm/s = (1200 kg) V'
V' = (6000 kgm/s ) /(1200 kg)
V' = 5 m/s
You didn't include the numerical value of speed.