Rutherford theorized that atoms have their charge concentrated in a very small nucleus.
This was famous Rutherford's Gold Foil Experiment: he bombarded thin foil of gold with positive alpha particles (helium atom particles, consist of two protons and two neutrons).
Rutherford observed the deflection of alpha particles on the photographic film and notice that most of alpha particles passed straight through foil.
That is different from Plum Pudding model, because it shows that most of the atom is empty space.
According to Rutherford model of the atom:
1) Atoms have their charge concentrated in a very small nucleus.
2) Major space in an atom is empty.
3) Atoms nucleus is surrounded by negatively charged particles called electrons.
4) An atom is electrically neutral.
Answer:
so the answer that you get isn't wrong? i dont know
Explanation:
1. Elements are substances made of the same kind of atoms, unlike compounds that are combination for different kinds of atoms. The elements in the reaction therefore are;
Cl and O₃
2. Yes, the equation is balanced. There is the same number of each element on either side of the equation. One (1) CL and three (3) O atoms.
3. Ozone is reduced. Other the other hand, Cl is oxidized. Remember a reduction reaction may involve the loss of one or more oxygen atoms or the acceptance of electrons. This occurs for O₃ which is reduced to O₂.
4. The equation complies with the conservation of matter as in the first law of thermodynamics. The number of atoms for each element on the other side of the equation remains the same. This means no matter(which also translated to energy) has been created or destroyed in the process.
Answer:
Number of moles = 0.042 mol
Explanation:
Given data:
Number of moles = ?
Mass of calcium carbonate = ?
Solution:
Formula:
Number of moles = mass/ molar mass
now we will calculate the molar mass of calcium carbonate.
atomic mass of Ca = 40 amu
atomic mass of C = 12 amu
atomic mass of O = 16 amu
CaCO₃ = 40 + 12+ 3×16
CaCO₃ = 40 + 12+48
CaCO₃ = 100 g/mol
Now we will calculate the number of moles.
Number of moles = 4.15 g / 100 g/mol
Number of moles = 0.042 mol