Answer:
18.84 g of silver.
Explanation:
We'll begin by calculating the number atoms present in 5.59 g of sulphur. This can be obtained as follow:
From Avogadro's hypothesis,
1 mole of sulphur contains 6.02×10²³ atoms.
1 mole of sulphur = 32 g
Thus,
32 g of sulphur contains 6.02×10²³ atoms.
Therefore, 5.59 g of sulphur will contain = (5.59 × 6.02×10²³) / 32 = 1.05×10²³ atoms.
From the calculations made above, 5.59 g of sulphur contains 1.05×10²³ atoms.
Finally, we shall determine the mass of silver that contains 1.05×10²³ atoms.
This is illustrated below:
1 mole of silver = 6.02×10²³ atoms.
1 mole of silver = 108 g
108 g of silver contains 6.02×10²³ atoms.
Therefore, Xg of silver will contain 1.05×10²³ atoms i.e
Xg of silver = (108 × 1.05×10²³)/6.02×10²³
Xg of silver = 18.84 g
Thus, 18.84 g of silver contains the same number of atoms (i.e 1.05×10²³ atoms) as 5.59 g of sulfur
Answer:
It would be an isotope.
Background Information:
Isotopes are typically elements that have a different number of protons than neutrons. The atomic mass is the total number of protons and neutrons. The atomic number is the number of protons.
Explanation:
If the atomic number is the number of protons that means that this particular element has 8 protons. If the atomic mass is the total number of protons and neutrons then we can simply take away the amount of protons from that number, 18 - 8 = 10. If we take protons away from the number of protons and neutrons we are left with the number of neutrons. So there are 10 neutrons. Because there are 8 protons and 10 neutrons, or a different amount of neutrons and protons we know that this particular atom is an isotope.
I believe there are 3 significant figures B.