Answer:
50 N.
Explanation:
On top of a horizontal surface, the normal force acting on an object is equivalent to the force of gravity acting on the object. That is:

The mass of the block is 5 kg and the given force due to gravity is 10 N/kg. Substitute and evaluate:

In conclusion, the normal force acting on the block is 50 N.
a) An inflated balloon was pressed against a wall after it has been rubbed with a piece of synthetic cloth. It was found that the balloon sticks to the wall. <u>This is because a positive and negative electric charge is produced, therefore the balloon sticks to the wall.</u>
b) When an object is thrown up, it comes back to ground <u>because of gravitational attraction force of earth</u>.
c) Mountaineers suffer nose bleeding at higher altitudes <u>because the oxygen level decreases with increase in altitude, which the body cannot adjust.</u>
d) Foundations of high rise buildings are kept wide <u>because more is the area of contact, less is the pressure efforts. So, foundations are wide so as to decrease the possibility of the building from falling down.</u>
e) Deep sea divers or high altitude fliers wear special suits <u>so as prevent their body from being crushed by the water pressure. Since water pressure is maximum at deep seas and oceans, therefore, more is the risk of being injured.</u>
f) Walls of a dam are thickened near the base <u>so that the dam can handle the kinetic energy pressure and prevent itself from breaking down, which if not, can lead to flooding</u>.
HOPE IT HELPS...
Answer:
9155 years old
Explanation:
We use the following expression for the decay of a substance:

So we first estimate the value of k knowing that the half-life of the C14 is 5730 years:

so, now we can estimate the age of the artifact by solving for"t" in the equation:

which we can round to 9155 years old.
Answer:
61.33 Kg
Explanation:
From the question given above, the following data were obtained:
Distance = 1×10² m
Time = 9.5 s
Kinetic energy (KE) = 3.40×10³ J
Mass (m) =?
Next, we shall determine the velocity Leroy Burrell. This can be obtained as follow:
Distance = 1×10² m
Time = 9.5 s
Velocity =?
Velocity = Distance / time
Velocity = 1×10² / 9.5
Velocity = 10.53 m/s
Finally, we shall determine the mass of Leroy Burrell. This can be obtained as follow:
Kinetic energy (KE) = 3.40×10³ J
Velocity (v) = 10.53 m/s
Mass (m) =?
KE = ½mv²
3.40×10³ = ½ × m × 10.53²
3.40×10³ = ½ × m × 110.8809
3.40×10³ = m × 55.44045
Divide both side by 55.44045
m = 3.40×10³ / 55.44045
m = 61.33 Kg
Thus, the mass of Leroy Burrell is 61.33 Kg
The formula for average speed is

So we can just substitute our data.

- its the result