Answer: Vibrating
Explanation:
Sound is produced when an object vibrates. The sound vibrations cause waves of pressure that travel through a medium, such as air, water, wood or metal. Sound is a form of mechanical energy.
The change in velocity is 5m/s which added to the initial 3m/s makes the final velocity 8m/s
Distance = (3*5) + (1/2*1*5^2)= 15+12.5= 27.5m
Answer:
3.6 KJ
Explanation: Given that a 70-kg boy is surfing and catches a wave which gives him an initial speed of 1.6 m/s. He then drops through a height of 1.60 m, and ends with a speed of 8.5 m/s. How much nonconservative work (in kJ) was done on the boy
The workdone = the energy.
There are two different energies in the scenario - the potential energy (P.E ) and the kinetic energy ( K.E )
P.E = mgh
P.E = 70 × 9.8 × 1.6
P.E = 1097.6 J
P.E = 1.098 KJ
K.E = 1/2mv^2
K.E = 1/2 × 70 × 8.5^2
K.E = 2528.75 J
K.E = 2.529 KJ
The non conservative workdone = K.E + P.E
Work done = 1.098 + 2.529
Work done = 3.63 KJ
Therefore, the non conservative workdone is 3.6 KJ approximately
Mid ocean ridges
The mountain ranges in the middle of the oceans
Sea floor spreading
The process by which new, oceanic crust forms along a mid ocean ridge and older crust moves away from the ridge. :)
Answer:


Explanation:
the maximum speed is reached when the drag force and the weight are at equilibrium, therefore:




To calculate the velocity after 100 meters, we can no longer assume equilibrium, therefore:



(1)
consider the next equation of motion:

If assuming initial velocity=0:
(2)
joining (1) and (2):




(3)





To plot velocity as a function of distance, just plot equation (3).
To plot velocity as a function of time, you have to consider the next equation of motion:

as stated before, the initial velocity is 0:
(4)
joining (1) and (4) and reducing you will get:

solving for v:

Plots: