A four cycle engine works with 4 basic steps to a successful rotation of the crankshaft: the intake, compression, power and exhaust stroke. Each engine cylinder has four openings for the intake, exhaust, spark plug and fuel injection. ... The compression makes the air-fuel combination volatile for easier ignition.
In a crystal, the molecules are closer together as they are in any solid. they have less room to move, and might even be combined together rather than individual
If your equation is <span>Cu+NO^- 3-->Cu^2+NO, then the answer is
</span><span>2 Cu + 1 NO3{-} → 1 Cu^{2+} + 3 NO
</span>
To check if it is balance, this is the solution:
2- Cu- 2
3- N -3
3- O -3
When the specific heat capacity of the water is 4.18 J/g.°C so, we are going to use this formula to get the heat for cooling three phases changes from steam to liquid and from liquid to ice (solid) :
when Q = M*C*ΔT
Q is the heat in J
and M is the mass in gram = 1 mol H2O * 18 g/mol(molar mass) = 18 g
C is the specific heat J/g.°C
ΔT is the change in temperature
Q = Mw *[ ( Csteam * ΔTsteam)+(Cw*ΔTw) + (Cice * ΔT ice)]
= 18 g * [(2.01 * (155-100°C)) + (4.18 * (100-0°C)) + (2.09 * (0 - 55 °C))]
∴Q = 7444.8 J
and when we know that the heat of fusion for water = 334J/g
and heat of vaporization for water = 2260J/g
∴Q for the two phases changes = M * (2260+334)
= 18 * (2260+334)
= 46692 J
∴ Q total = 7444.8 + 46692 = 54136.8 J
Answer:
0.109 g.
Explanation:
Equation of the reaction:
Na3PO4 + 3HCl --> 3NaCl + H3PO4
Number of moles of HCl = molar concentration × volume
= 0.1 × 0.04
= 0.004 mol.
By stoichiometry, 1 mole of Na3PO4 neutralises 3 moles of HCl. Therefore, number of moles of Na3PO4 = 0.004/3
= 0.0013 mol
Mass of Na3PO4 = molar mass × number of moles
= 0.0013 × 164
= 0.219 g
Since 50% of Na3PO4 was present in the sample. Let 100 g be the total mass of the substance
= 0.219 × 50 g/100 g
= 0.109 g.